Asymptotically good LCD 2-quasi-abelian codes over finite fields

被引:1
作者
Zhang, Guanghui [1 ]
Lin, Liren [2 ]
Liu, Xuemei [3 ]
机构
[1] Suqian Univ, Dept Math, Suqian 223800, Jiangsu, Peoples R China
[2] Hubei Univ, Sch Cyber Sci & Technol, Hubei Key Lab Appl Math, Wuhan 430062, Hubei, Peoples R China
[3] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite fields; Quasi-abelian codes of index 2; Asymptotically good; LCD codes; QUASI-CYCLIC CODES; LINEAR CODES;
D O I
10.1016/j.disc.2024.114224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a class of linear complementary dual (LCD for short) 2quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:14
相关论文
共 23 条
  • [1] Alperin J.L, 1995, Group Representations
  • [2] Some randomized code constructions from group actions
    Bazzi, Louay A. J.
    Mitter, Sanjoy K.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (07) : 3210 - 3219
  • [3] Complementary Dual Codes for Counter-Measures to Side-Channel Attacks
    Carlet, Claude
    Guilley, Sylvain
    [J]. CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 97 - 105
  • [4] SOME RESULTS ON QUASI-CYCLIC CODES
    CHEN, CL
    PETERSON, WW
    [J]. INFORMATION AND CONTROL, 1969, 15 (05): : 407 - &
  • [5] Chepyzhov VV., 1992, PROBL PEREDACHI INF, V28, P39
  • [6] Codes closed under arbitrary abelian group of permutations
    Dey, BK
    Rajan, BS
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) : 1 - 18
  • [7] Dihedral Group Codes Over Finite Fields
    Fan, Yun
    Lin, Liren
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5016 - 5025
  • [8] Quasi-Cyclic Codes of Index 1 1/3
    Fan, Yun
    Liu, Hualu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6342 - 6347
  • [9] Thresholds of Random Quasi-Abelian Codes
    Fan, Yun
    Lin, Liren
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 82 - 90
  • [10] GILBERT-VARSHAMOV BOUND FOR QUASI-CYCLIC CODES OF RATE 1-2
    KASAMI, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (05) : 679 - 679