OVERVIEW OF MULTIMODAL DATA AND ITS APPLICATION TO FAKE- NEWS DETECTION

被引:0
|
作者
Boyko, Nataliya [1 ]
机构
[1] Lviv Polytech Natl Univ, Dept Artificial Intelligence Syst, Lvov, Ukraine
关键词
Technologies; Information environment; Neural networks; Testing approaches; Disinformation sources;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of the growing popularity of social media over the past ten years, an urgent problem of fake news spreading has arisen, which underscores the research's relevance. The aim of this article is to assess the efficacy of multimodal approaches in detecting fake news, a pressing issue given the substantial impact misinformation can have on health, politics and economics. To achieve this goal, a multimodal approach was chosen that combines deep-learning frameworks and pre-trained models. This approach provides a comprehensive analysis of textual, visual and audio information, allowing for more accurate identification of disinformation sources. The use of various knowledge-transfer methods made it possible to process information efficiently, improving the quality of classification. The study conducted a thorough analysis of various data-collection strategies, as well as a comparative analysis of available multimodal approaches to fake-news detection and the datasets used. The results of this study included a detailed analysis of current research work in the field of fake-news detection and the development of a multimodal approach to this problem. Textual, visual and audio information was processed using pre-trained models and deep learning, achieving high accuracy in fake news detection. The results of the study indicated that the multimodal approach allows for more accurate identification of sources of disinformation and increases the efficiency of fake-news classification compared to other methods. A comparative analysis of various data collection strategies and datasets was also conducted, confirming the high efficiency of the approach under various conditions.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 50 条
  • [41] Leveraging Intra and Inter Modality Relationship for Multimodal Fake News Detection
    Singhal, Shivangi
    Pandey, Tanisha
    Mrig, Saksham
    Shah, Rajiv Ratn
    Kumaraguru, Ponnurangam
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 726 - 734
  • [42] Cross-modal Ambiguity Learning for Multimodal Fake News Detection
    Chen, Yixuan
    Li, Dongsheng
    Zhang, Peng
    Sui, Jie
    Lv, Qin
    Lu, Tun
    Shang, Li
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2897 - 2905
  • [43] Multimodal Fake News Detection via CLIP-Guided Learning
    Zhou, Yangming
    Yang, Yuzhou
    Ying, Qichao
    Qian, Zhenxing
    Zhang, Xinpeng
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2825 - 2830
  • [44] Multimodal Fake News Detection Based on Contrastive Learning and Similarity Fusion
    Li, Yan
    Jia, Kaidi
    Wang, Qiyuan
    IEEE ACCESS, 2024, 12 : 155351 - 155364
  • [45] Multimodal Fusion with Co-Attention Networks for Fake News Detection
    Wu, Yang
    Zhan, Pengwei
    Zhang, Yunjian
    Wang, Liming
    Xu, Zhen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2560 - 2569
  • [46] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100
  • [47] Temporal Enhanced Multimodal Graph Neural Networks for Fake News Detection
    Qu, Zhibo
    Zhou, Fuhui
    Song, Xi
    Ding, Rui
    Yuan, Lu
    Wu, Qihui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 13
  • [48] Similarity-Aware Multimodal Prompt Learning for fake news detection
    Jiang, Ye
    Yu, Xiaomin
    Wang, Yimin
    Xu, Xiaoman
    Song, Xingyi
    Maynard, Diana
    INFORMATION SCIENCES, 2023, 647
  • [49] SceneFND: Multimodal fake news detection by modelling scene context information
    Zhang, Guobiao
    Giachanou, Anastasia
    Rosso, Paolo
    JOURNAL OF INFORMATION SCIENCE, 2024, 50 (02) : 355 - 367
  • [50] Cross-modal Contrastive Learning for Multimodal Fake News Detection
    Wang, Longzheng
    Zhang, Chuang
    Xu, Hongbo
    Xu, Yongxiu
    Xu, Xiaohan
    Wang, Siqi
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5696 - 5704