Chemocatalytic Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic Acid Over Nickel Cobalt Oxide

被引:3
|
作者
Prasad, Shivshankar [1 ]
Kumar, Ajay [1 ]
Dutta, Suman [1 ]
Ahmad, Ejaz [1 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Chem Engn, GreenCat Lab, Dhanbad 826004, India
关键词
2,5-furandicarboxylic acid; 5-hydroxymethylfurfural; Lattice oxygen; Oxygen mobility; Tert-butyl hydroperoxide; SELECTIVE AEROBIC OXIDATION; CATALYSTS; SUPPORT; BASE; MICROWAVE; BIOMASS; PHASE;
D O I
10.1002/cctc.202400973
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study reports the synthesis, characterization, and application of NiCo bimetallic catalysts to produce 2,5-furandicarboxylic acid (FDCA) via the oxidation of bio-renewable 5-hydroxymethylfurfural (HMF). FDCA is a biopolymer precursor and a potential replacement for terephthalic acid (TPA). The catalysts were synthesized via the co-precipitation method in different molar ratios of NiCo, followed by calcination in a muffle furnace. As a result, the complete conversion of HMF and a maximum 84.89 % FDCA yield was measured at 50 degrees C in 50 minutes in the presence of NiCo(3 : 1) catalyst. In addition, effect reaction parameters, including catalyst amount, temperature, time, base, and oxidant amount on the FDCA yield, were studied, and the process was optimized. The NiCo(3 : 1) catalyst showed a negligible loss in activity for at least five cycles. The higher catalytic activity and stability are attributed to the synergistic effect of bimetallic catalysts, such as higher lattice oxygen. Accordingly, the catalyst was characterized using BET, XRD, H2-TPR, CO2-TPD, HR-TEM, and XPS to correlate their properties and activity. The reaction products were analyzed quantitatively using HPLC and qualitatively using HR-MS. The oxidation reaction of 5-hydroxymethylfurfural has been carried out using bimetallic nickel cobalt catalyst to produce into 2,5-furandicarboxylic acid (FDCA). It is observed that higher lattice oxygen and oxygen mobility of bimetallic catalysts are responsible for better FDCA yield. Maximum 84.9 % FDCA yield is measured using NiCo (3 : 1) catalyst and tert-butyl hydroperoxide oxidant at 50 degrees C in 50 minutes. image
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid over Ru/Al2O3 in a Trickle-Bed Reactor
    da Fonseca Ferreira, Anna Danielli
    de Mello, Matheus Dorneles
    Pereira da Silva, Monica Antunes
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (01) : 128 - 137
  • [22] 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts
    Demet, Atif Emre
    Gimello, Olinda
    Arletti, Rossella
    Tanchoux, Nathalie
    Sougrati, Moulay Tahar
    Stievano, Lorenzo
    Quignard, Francoise
    Centi, Gabriele
    Perathoner, Siglinda
    Di Renzo, Francesco
    CATALYSTS, 2022, 12 (08)
  • [23] Aerobic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over Gold Stabilized on Zirconia-Based Supports
    Rabee, Abdallah I. M.
    Le, Son Dinh
    Higashimine, Koichi
    Nishimura, Shun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (18): : 7150 - 7161
  • [24] Advances in the Energy-Saving Electro-Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Ren, Yujie
    Fan, Shilin
    Yu, Xiao
    Shi, Shaoqi
    Wang, Jinggang
    Zeng, Jia
    Zhang, Jian
    Chen, Chunlin
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (04):
  • [25] Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural
    Zuo, Xiaobin
    Venkitasubramanian, Padmesh
    Martin, Kevin J.
    Subramaniam, Bala
    CHEMSUSCHEM, 2022, 15 (13)
  • [26] On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts
    Davis, Sara E.
    Zope, Bhushan N.
    Davis, Robert J.
    GREEN CHEMISTRY, 2012, 14 (01) : 143 - 147
  • [27] Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin
    Gao, Langchang
    Deng, Kejian
    Zheng, Judun
    Liu, Bing
    Zhang, Zehui
    CHEMICAL ENGINEERING JOURNAL, 2015, 270 : 444 - 449
  • [28] Effect of Ag Addition to Au Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    de Boed, Ewoud J. J.
    Nolten, Hidde L.
    Masoud, Nazila
    Vogel, Robin
    Wang, Fei
    Xu, Zhuoran
    Doskocil, Eric J.
    Donoeva, Baira
    de Jongh, Petra E.
    CHEMCATCHEM, 2024, 16 (12)
  • [29] Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions
    Liu, Bing
    Ren, Yongshen
    Zhang, Zehui
    GREEN CHEMISTRY, 2015, 17 (03) : 1610 - 1617
  • [30] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659