Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model

被引:8
作者
Lyu, Guitao [1 ]
Kottmann, Korbinian [2 ]
Plenio, Martin B. [3 ,4 ]
Hwang, Myung-Joong [1 ,5 ]
机构
[1] Duke Kunshan Univ, Div Nat & Appl Sci, Kunshan 215300, Jiangsu, Peoples R China
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[3] Ulm Univ, Inst Theoret Phys, Albert Einstein Allee 11, D-89081 Ulm, Germany
[4] Ulm Univ, IQST, Albert Einstein Allee 11, D-89081 Ulm, Germany
[5] Duke Kunshan Univ, Zu Chongzhi Ctr Math & Computat Sci, Kunshan 215300, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; SIMULATIONS; OSCILLATOR; DYNAMICS; QUTIP; GAS;
D O I
10.1103/PhysRevResearch.6.033075
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model, which exhibits first-order and second-order dissipative phase transitions upon varying the degree of anisotropy between the coupling strengths of rotating and counter-rotating terms. Using both semiclassical and quantum approaches, we find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation. First, there exists a bistable phase where both the normal and superradiant phases are stable. Second, there are multicritical points where the phase boundaries for the first- and second-order phase transitions meet. We show that a new set of critical exponents governs the scaling of the multicritical points. Finally, we discuss the feasibility of observing the multicritical transitions and bistability using a pair of trapped ions where the anisotropy can be tuned by controlling the intensity of the Raman transitions. Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems, which could be useful for applications in critical quantum sensing.
引用
收藏
页数:14
相关论文
共 85 条
[1]   Superradiance transition in a system with a single qubit and a single oscillator [J].
Ashhab, S. .
PHYSICAL REVIEW A, 2013, 87 (01)
[2]   Non-Hermitian physics [J].
Ashida, Yuto ;
Gong, Zongping ;
Ueda, Masahito .
ADVANCES IN PHYSICS, 2020, 69 (03) :249-435
[3]   Realization of the Dicke Model Using Cavity-Assisted Raman Transitions [J].
Baden, Markus P. ;
Arnold, Kyle J. ;
Grimsmo, Arne L. ;
Parkins, Scott ;
Barrett, Murray D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[4]   Quantum phase transition in the Dicke model with critical and noncritical entanglement [J].
Bakemeier, L. ;
Alvermann, A. ;
Fehske, H. .
PHYSICAL REVIEW A, 2012, 85 (04)
[5]   Controlling Discrete and Continuous Symmetries in "Superradiant" Phase Transitions with Circuit QED Systems [J].
Baksic, Alexandre ;
Ciuti, Cristiano .
PHYSICAL REVIEW LETTERS, 2014, 112 (17)
[6]   Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions [J].
Bartolo, Nicola ;
Minganti, Fabrizio ;
Casteels, Wim ;
Ciuti, Cristiano .
PHYSICAL REVIEW A, 2016, 94 (03)
[7]   Exploring Symmetry Breaking at the Dicke Quantum Phase Transition [J].
Baumann, K. ;
Mottl, R. ;
Brennecke, F. ;
Esslinger, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[8]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[9]   Phonon Laser in the Quantum Regime [J].
Behrle, T. ;
Nguyen, T. L. ;
Reiter, F. ;
Baur, D. ;
de Neeve, B. ;
Stadler, M. ;
Marinelli, M. ;
Lancellotti, F. ;
Yelin, S. F. ;
Home, J. P. .
PHYSICAL REVIEW LETTERS, 2023, 131 (04)
[10]   Experimental observation of a dissipative phase transition in a multi-mode many-body quantum system [J].
Benary, J. ;
Baals, C. ;
Bernhart, E. ;
Jiang, J. ;
Roehrle, M. ;
Ott, H. .
NEW JOURNAL OF PHYSICS, 2022, 24 (10)