Enhanced CO2 Methanation over Nickel-Based Unsupported Catalyst Synthesized by Chemical Precipitation Method

被引:0
|
作者
Kumar Choudhary, Abhay [1 ]
Yadav, Sudeep [1 ]
Kumar Gupta, Pavan [2 ]
机构
[1] Bundelkhand Inst Engn & Technol Jhansi, Dept Chem Engn, Jhansi 284128, Uttar Pradesh, India
[2] Cent Inst Min & Fuel Res, CSIR, Gasificat & Catalysis Res Grp PO FRI, Digwadih Campus, Dhanbad 826001, Jharkhand, India
来源
CHEMISTRYSELECT | 2024年 / 9卷 / 30期
关键词
CO2; methanation; NiC2O4.2H(2)O; NiO nanoparticles; Oxalic acid; CARBON-DIOXIDE; NI/AL2O3; CATALYSTS; NIO NANOPARTICLES; RU/AL2O3; ADSORPTION; ALUMINA; OXIDES;
D O I
10.1002/slct.202400572
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study investigated the catalytic CO2 methanation using nickel oxide (NiO) nanoparticles and nickel oxalate (NiC2O4) as catalysts. The NiC2O4 precursor was synthesized through a chemical precipitation reaction between nickel (II) nitrate hexahydrate (Ni(NO3)(2).6H(2)O) and oxalic acid (H2C2O4.2H(2)O). Nickel oxide (NiO) nanoparticles were synthesized through thermal decomposition of NiC2O4 precursor at 450 degrees C in air. The samples were characterized by XRD, FTIR, BET, SEM, and EDX. The XRD and FTIR analyses revealed that the NiO nanoparticles were well-crystallized having size 17.30 nm. The BET analysis of the NiO sample revealed mesoporous NiO nanoparticles with a specific surface area (S-BET) of 29.08 m(2)/g and a narrow distribution of pore sizes. The catalytic performance of NiO and NiC2O4 catalysts studied for the CO2 methanation in tubular packed bed reactor at 150-550 degrees C and 1 atm. The reduced NiO nanoparticles exhibited more catalytic activity than the decomposed NiC2O4 catalyst. At 380 degrees C, 1 atm, and gas hourly space velocity (GHSV) of 9000 mL g(-1) h(-1), the reduced NiO nanoparticle catalyst showed high catalytic activity, with a maximum CO2 conversion of 85.54 %, 99 % CH4 selectivity, and 84.69 % CH4 yield. Furthermore, the NiO nanoparticle catalyst demonstrated excellent stability after 12 h of streaming at 380 degrees C.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Nickel-Based Ni-Ce1-xZrxO2 Catalysts Prepared by the Pechini Method for CO2 Methanation
    Pakharukova, V. P.
    Stonkus, O. A.
    Kharchenko, N. A.
    Rogozhnikov, V. N.
    Chesalov, Yu. A.
    Gorlova, A. M.
    Saraev, A. A.
    Potemkin, D. I.
    KINETICS AND CATALYSIS, 2023, 64 (05) : 671 - 682
  • [22] Mechanochemical CO2 methanation over LaNi-based alloys
    Yatagai, Kohei
    Shishido, Yuto
    Gemma, Ryota
    Boll, Torben
    Uchida, Haru-Hisa
    Oguri, Kazuya
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (08) : 5264 - 5275
  • [23] CO2 Methanation over Hydrotalcite-Derived Nickel/Ruthenium and Supported Ruthenium Catalysts
    Martins, Joana A.
    Faria, A. Catarina
    Soria, Miguel A.
    Miguel, Carlos, V
    Rodrigues, Alirio E.
    Madeira, Luis M.
    CATALYSTS, 2019, 9 (12)
  • [24] CO and CO2 Methanation Over Ni/γ-Al2O3 Prepared by Deposition-Precipitation Method
    Thien An Le
    Kang, Jong Kyu
    Lee, Sae Ha
    Park, Eun Duck
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (06) : 3252 - 3262
  • [25] Enhanced low-temperature CO2 methanation activity on plasma-prepared Ni-based catalyst
    Bian, Li
    Zhang, Li
    Xia, Rong
    Li, Zhenhua
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 27 : 1189 - 1194
  • [26] Reaction mechanism of CO2 methanation over Rh/TiO2 catalyst
    Yang, Yingju
    Liu, Jing
    Liu, Feng
    Wu, Dawei
    FUEL, 2020, 276 (276)
  • [27] The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation
    Aljishi, Ali
    Veilleux, Gabriel
    Lalinde, Jose Augusto Hernandez
    Kopyscinski, Jan
    APPLIED CATALYSIS A-GENERAL, 2018, 549 : 263 - 272
  • [28] Enhanced stability of Ni/SiO2 catalyst for CO2 methanation: Derived from nickel phyllosilicate with strong metal-support interactions
    Ye, Run-Ping
    Gong, Weibo
    Sun, Zhao
    Sheng, Qingtao
    Shi, Xiufeng
    Wang, Tongtong
    Yao, Yi
    Razink, Joshua J.
    Lin, Ling
    Zhou, Zhangfeng
    Adidharma, Hertanto
    Tang, Jinke
    Fan, Maohong
    Yao, Yuan-Gen
    ENERGY, 2019, 188
  • [29] Rhenium-promoted selective CO2 methanation on Ni-based catalyst
    Yuan, Hongjuan
    Zhu, Xinli
    Han, Jinyu
    Wang, Hua
    Ge, Qingfeng
    JOURNAL OF CO2 UTILIZATION, 2018, 26 : 8 - 18
  • [30] Selection and optimisation of a zeolite/catalyst mixture for sorption-enhanced CO2 methanation (SEM) process
    Gomez, Laura
    Martinez, Isabel
    Navarro, Maria Victoria
    Murillo, Ramon
    JOURNAL OF CO2 UTILIZATION, 2023, 77