共 50 条
Long-term deep reinforcement learning for real-time economic generation control of cloud energy storage systems with varying structures
被引:1
作者:

Yin, Linfei
论文数: 0 引用数: 0
h-index: 0
机构:
Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Guangxi, Peoples R China Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Guangxi, Peoples R China

Xiong, Yi
论文数: 0 引用数: 0
h-index: 0
机构:
Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Guangxi, Peoples R China Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Guangxi, Peoples R China
机构:
[1] Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Guangxi, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Deep reinforcement learning;
Energy storage systems;
Long short-term memory;
Economic dispatch;
Automatic generation control;
Deep neural networks;
CONTROL STRATEGY;
OPTIMIZATION;
DISPATCH;
D O I:
10.1016/j.engappai.2024.109363
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Energy storage systems play a crucial role in modern power systems. Consequently, a mixed cloud energy storage (CES) system is proposed. The mixed CES system comprises consumers and prosumers. The consumers can only consume energy. The prosumers can either produce or consume energy at different time intervals. The proposed mixed CES system is designed for investigating the generation control challenges in mixed interconnected power systems. To optimize the active power balance and economic efficiency of the mixed CES system, a long-term deep reinforcement learning (LDRL) artificial intelligence approach is proposed as the real-time economic generation controller to control the mixed CES system. The LDRL consists of a reinforcement mechanism and two models: a long short-term memory model for economic dispatch and a deep neural networks model for smart generation control. The reinforcement framework updates policies for the prosumers. The efficacy of proposed method is validated across three mixed systems, i.e., the improved IEEE 300-bus, Polish 2383-bus, and mixed systems with varying structures. The numerical simulations verify that the LDRL method can efficiently and economically control the mixed CES systems with diverse structures.
引用
收藏
页数:16
相关论文
共 50 条
- [1] A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting[J]. ENERGY, 2022, 239论文数: 引用数: h-index:机构:论文数: 引用数: h-index:机构:
- [2] Using the internet of things in smart energy systems and networks[J]. SUSTAINABLE CITIES AND SOCIETY, 2021, 68论文数: 引用数: h-index:机构:论文数: 引用数: h-index:机构:
- [3] Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids[J]. APPLIED ENERGY, 2020, 268Beccali, Marco论文数: 0 引用数: 0 h-index: 0机构: Univ Palermo, Palermo, Italy Univ Palermo, Palermo, ItalyBellia, Laura论文数: 0 引用数: 0 h-index: 0机构: Univ Napoli Federico II, Naples, Italy Univ Palermo, Palermo, ItalyFragliasso, Francesca论文数: 0 引用数: 0 h-index: 0机构: Univ Napoli Federico II, Naples, Italy Univ Palermo, Palermo, ItalyBonomolo, Marina论文数: 0 引用数: 0 h-index: 0机构: Univ Palermo, Palermo, Italy Univ Palermo, Palermo, ItalyZizzo, Gaetano论文数: 0 引用数: 0 h-index: 0机构: Univ Palermo, Palermo, Italy Univ Palermo, Palermo, ItalySpada, Gennaro论文数: 0 引用数: 0 h-index: 0机构: Univ Napoli Federico II, Naples, Italy Univ Palermo, Palermo, Italy
- [4] Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach[J]. ENERGY, 2022, 239Bidgoli, Mohsen Alizadeh论文数: 0 引用数: 0 h-index: 0机构: Islamic Azad Univ, Yadegar E Imam Khomeini RAH Shahre Rey Branch, Dept Elect Engn, Tehran, Iran Islamic Azad Univ, Yadegar E Imam Khomeini RAH Shahre Rey Branch, Dept Elect Engn, Tehran, IranAhmadian, Ali论文数: 0 引用数: 0 h-index: 0机构: Univ Bonab, Dept Elect Engn, Bonab, Iran Islamic Azad Univ, Yadegar E Imam Khomeini RAH Shahre Rey Branch, Dept Elect Engn, Tehran, Iran
- [5] Real-time operation of distribution network: A deep reinforcement learning-based reconfiguration approach[J]. SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 50Bui, Van-Hai论文数: 0 引用数: 0 h-index: 0机构: Univ Michigan Dearborn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA Univ Michigan Dearborn, Coll Engn & Comp Sci, Dearborn, MI 48128 USASu, Wencong论文数: 0 引用数: 0 h-index: 0机构: Univ Michigan Dearborn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA Univ Michigan Dearborn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA
- [6] Power reserve predictive control strategy for hybrid electric vehicle using recognition-based long short-term memory network[J]. JOURNAL OF POWER SOURCES, 2022, 520Chen, Ruihu论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R ChinaYang, Chao论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401122, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R ChinaHan, Lijin论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R ChinaWang, Weida论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401122, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R ChinaMa, Yue论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401122, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R ChinaXiang, Changle论文数: 0 引用数: 0 h-index: 0机构: Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401122, Peoples R China Beijing Inst Technol, Key Lab Vehicular Transmiss, Beijing 100081, Peoples R China
- [7] Effective and Efficient Batch Normalization Using a Few Uncorrelated Data for Statistics Estimation[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 348 - 362Chen, Zhaodong论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R China Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaDeng, Lei论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaLi, Guoqi论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R China Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaSun, Jiawei论文数: 0 引用数: 0 h-index: 0机构: Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R China Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaHu, Xing论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaLiang, Ling论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaDing, Yufei论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R ChinaXie, Yuan论文数: 0 引用数: 0 h-index: 0机构: Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA Tsinghua Univ, Beijing Innovat Ctr Future Chip, Ctr Brain Inspired Comp Res, Dept Precis Instrument, Beijing 100084, Peoples R China
- [8] Workflow scheduling based on deep reinforcement learning in the cloud environment[J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (12) : 10823 - 10835Dong, Tingting论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R ChinaXue, Fei论文数: 0 引用数: 0 h-index: 0机构: Beijing Wuzi Univ, Sch Informat, Beijing, Peoples R China Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R ChinaXiao, Chuangbai论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R ChinaZhang, Jiangjiang论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
- [9] Deep reinforcement learning control of electric vehicle charging in the of[J]. APPLIED ENERGY, 2021, 301Dorokhova, Marina论文数: 0 引用数: 0 h-index: 0机构: Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, Switzerland Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, SwitzerlandMartinson, Yann论文数: 0 引用数: 0 h-index: 0机构: Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, Switzerland Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, SwitzerlandBallif, Christophe论文数: 0 引用数: 0 h-index: 0机构: Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, Switzerland Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, SwitzerlandWyrsch, Nicolas论文数: 0 引用数: 0 h-index: 0机构: Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, Switzerland Ecole Polytech Fed Lausanne EPFL, Photovolta & Thin Film Elect Lab PV Lab, Inst Microengn IMT, Rue Maladiere 71b, CH-2000 Neuchatel, Switzerland
- [10] Improved Random Drift Particle Swarm Optimization With Self-Adaptive Mechanism for Solving the Power Economic Dispatch Problem[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (03) : 1017 - 1026Elsayed, Wael Taha论文数: 0 引用数: 0 h-index: 0机构: Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, CanadaHegazy, Yasser G.论文数: 0 引用数: 0 h-index: 0机构: German Univ Cairo, Fac Informat & Engn Technol, Cairo 11432, Egypt Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, CanadaEl-bages, Mohamed S.论文数: 0 引用数: 0 h-index: 0机构: Benha Univ, Shoubra Fac Engn, Elect Engn Dept, Cairo 11629, Egypt Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, CanadaBendary, Fahmy M.论文数: 0 引用数: 0 h-index: 0机构: Benha Univ, Shoubra Fac Engn, Elect Engn Dept, Cairo 11629, Egypt Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada