Heterostructure engineering of N-doped Co@ carbon nanotubes toward broadband efficient electromagnetic absorption

被引:66
作者
Wu, Dan [1 ,3 ]
Lan, Di [1 ]
Li, Yingqi [2 ]
Zhou, Nifan [3 ]
He, Qinchuan [3 ]
Wang, Yiqun [3 ,4 ]
机构
[1] Hubei Univ Automot Technol, Sch Mat Sci & Engn, Shiyan 442002, Peoples R China
[2] Sichuan Univ, Dept Appl Mech, Chengdu 610065, Sichuan, Peoples R China
[3] Chengdu Univ Technol, Coll Mat Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[4] Sichuan Keshengxin Environm Technol Co, Chengdu 610059, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetic wave absorption; Heterogeneous structure; Carbon nanotubes composites; Multiple interfaces; METAL-ORGANIC FRAMEWORK; MICROWAVE ABSORBING PROPERTIES; COMPOSITES; LIGHTWEIGHT; ENHANCEMENT; NANORODS; AEROGELS; SPONGE; GROWTH; CNTS;
D O I
10.1016/j.colsurfa.2024.135161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synergistic effect of magnetic loss and dielectric loss, as well as the reasonable construction of microstructure, have a significant effect on improving the absorption performance of electromagnetic wave absorbers. In this paper, N-doping Co@ carbon nanotubes (NCC) composites are successfully grown in situ on cobalt particles using a cobalt source as a catalyst. The metal particle Co is encapsulated within the carbon nanotubes and N is doped in the carbon lattice. This special structure introduces a large number of heterogeneous interfaces and defects, leading to optimized impedance matching and strong electromagnetic attenuation. The results showed that the minimum reflection loss is-69.33 dB for NCC800-1 with a thickness of 1.6 mm, and NCC900-4 possesses the widest effective absorption bandwidth of 7.70 GHz at a thickness of 2.1 mm with other NCC composites. Furthermore, the radar scattering cross section simulation results confirm that the prepared absorbing coatings can well suppress radar waves in different directions. The outstanding absorption performance is attributed to the defects and heterogeneous interfaces in the cobalt-catalyzed carbon nanofibers, the conductive network formed by carbon fibers, and the synergistic effects of magnetic and dielectric losses. This work presents a novel engineering approach for synthesizing absorbers with multiple loss mechanisms and heterogeneous structures, offering a promising pathway for the development of high-performance electromagnetic wave absorbing materials.
引用
收藏
页数:10
相关论文
共 74 条
[1]   Employing Nitrogen Doping as Innovative Technique to Improve Broadband Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites [J].
Arjmand, Mohammad ;
Ameli, Amir ;
Sundararaj, Uttandaraman .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2016, 301 (05) :555-565
[2]   In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber [J].
Chai, Liang ;
Wang, Yiqun ;
Zhou, Nifan ;
Du, Yu ;
Zeng, Xiaodong ;
Zhou, Shiyi ;
He, Qinchuan ;
Wu, Guanglei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 :475-484
[3]   3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity [J].
Chen, Yi-Hua ;
Huang, Zi-Han ;
Lu, Ming-Ming ;
Cao, Wen-Qiang ;
Yuan, Jie ;
Zhang, De-Qing ;
Cao, Mao-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12621-12625
[4]   Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties [J].
Chen, Yu-Jin ;
Xiao, Gang ;
Wang, Tie-Shi ;
Ouyang, Qiu-Yun ;
Qi, Li-Hong ;
Ma, Yang ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Jin, Hai-Bo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (28) :13603-13608
[5]   Pure carbon microwave absorbers from anion-exchange resin pyrolysis [J].
Du, Yunchen ;
Wang, Jingyu ;
Cui, Chenkui ;
Liu, Xinrong ;
Wang, Xiaohong ;
Han, Xijiang .
SYNTHETIC METALS, 2010, 160 (19-20) :2191-2196
[6]   A review on electromagnetic microwave absorption properties: their materials and performance [J].
Elmahaishi, Madiha Fathi ;
Azis, Raba'ah Syahidah ;
Ismail, Ismayadi ;
Muhammad, Farah Diana .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 :2188-2220
[7]   Recent progress of nanomaterials for microwave absorption [J].
Green, Michael ;
Chen, Xiaobo .
JOURNAL OF MATERIOMICS, 2019, 5 (04) :503-541
[8]   Impregnating epoxy into N-doped-CNTs@carbon aerogel to prepare high-performance microwave-absorbing composites with extra-low filler content [J].
Guo, Tong ;
Chen, Xuelong ;
Zeng, Guanjie ;
Yang, Jinglei ;
Huang, Xiaozhong ;
Li, Changgeng ;
Tang, Xiu-Zhi .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 140
[9]   Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance [J].
He, Yunfei ;
Su, Qiang ;
Liu, Dongdong ;
Xia, Long ;
Huang, Xiaoxiao ;
Lan, Di ;
Liu, Yanan ;
Huang, Yudong ;
Zhong, Bo .
CHEMICAL ENGINEERING JOURNAL, 2024, 491
[10]   Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance [J].
Hu, Qingmei ;
Yang, Rongliang ;
Mo, Zichao ;
Lu, Dongwei ;
Yang, Leilei ;
He, Zhongfu ;
Zhu, Hai ;
Tang, Zikang ;
Gui, Xuchun .
CARBON, 2019, 153 :737-744