Machine learning-assisted rheumatoid arthritis formulations: A review on smart pharmaceutical design

被引:7
作者
Pouyanfar, Niki [1 ]
Anvari, Zahra [1 ]
Davarikia, Kamyar [2 ]
Aftabi, Parnia [2 ]
Tajik, Negin [2 ]
Shoara, Yasaman [2 ]
Ahmadi, Mahnaz [3 ,4 ]
Ayyoubzadeh, Seyed Mohammad [5 ,6 ]
Shahbazi, Mohammad-Ali [7 ]
Ghorbani-Bidkorpeh, Fatemeh [1 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Pharm, Dept Pharmaceut & Pharmaceut Nanotechnol, Valiasr Ave, Tehran 1991953381, Iran
[2] Shahid Beheshti Univ Med Sci, Student Res Comm, Sch Pharm, Tehran, Iran
[3] Shahid Beheshti Univ Med Sci, Sch Adv Technol Med, Dept Tissue Engn & Appl Cell Sci, Tehran, Iran
[4] Shahid Beheshti Univ Med Sci, Med Nanotechnol & Tissue Engn Res Ctr, Tehran, Iran
[5] Univ Tehran Med Sci, Sch Allied Med Sci, Dept Hlth Informat Management, Tehran, Iran
[6] Univ Tehran Med Sci, Hlth Informat Management Res Ctr, Tehran, Iran
[7] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Engn, Antonius Deusinglaan 1, NL-9713 AV Groningen, Netherlands
关键词
Artificial intelligence; Machine learning; Rheumatoid arthritis; Biomedical application; Drug delivery system; DRUG-DELIVERY SYSTEMS; ARTIFICIAL NEURAL-NETWORKS; SOLID LIPID NANOPARTICLES; ANTIARTHRITIC DRUGS; TARGETED DELIVERY; INTELLIGENCE; PREDICTION; THERAPY; MACROPHAGES; DENDRIMER;
D O I
10.1016/j.mtcomm.2024.110208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rheumatoid arthritis (RA) is a long-lasting autoimmune condition that causes significant suffering among those affected. The medications used to treat this disease, including NSAIDs (nonsteroidal anti-inflammatory drugs), glucocorticoids, DMARDs (disease-modifying antirheumatic drugs), and biologic agents, come with various drawbacks due to their inherent physicochemical properties and potential side effects. Utilizing pharmaceutical processes, formulating, and employing nanoparticle-based drug delivery approaches could potentially maximize the benefits of these drugs. However, developing suitable formulations and optimized drug delivery systems can be challenging in the laboratory, as incorrect formulas might lead to insufficient bioavailability and effectiveness. Different artificial intelligence techniques, particularly machine learning, have been applied in various aspects of RA research. These include utilizing AI to develop, optimize, and enhance drug delivery systems and predicting and enhancing the diagnosis and treatment methods employed for this disease. This review article explored the use of machine learning in manufacturing diverse pharmaceutical formulations and improving the diagnosis and treatment of RA disease.
引用
收藏
页数:20
相关论文
共 182 条
[1]   Strategies toward rheumatoid arthritis therapy; the old and the new [J].
Abbasi, Mojtaba ;
Mousavi, Mohammad Javad ;
Jamalzehi, Sirous ;
Alimohammadi, Reza ;
Bezvan, Maryam Hasanzadeh ;
Mohammadi, Hamed ;
Aslani, Saeed .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (07) :10018-10031
[2]   Development a novel robust method to enhance the solubility of Oxaprozin as nonsteroidal anti-inflammatory drug based on machine-learning [J].
Abdelbasset, Walid Kamal ;
Elkholi, Safaa M. ;
Ismail, Khadiga Ahmed ;
Alshehri, Sameer ;
Alobaida, Ahmed ;
Huwaimel, Bader ;
Alatawi, Ahmed D. ;
Alsubaiyel, Amal M. ;
Venkatesan, Kumar ;
Abourehab, Mohammed A. S. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   A mini-review on the application of machine learning in polymer nanogels for drug delivery [J].
Adekoya, Oluwasegun Chijioke ;
Yibowei, Moses Ebiowei ;
Adekoya, Gbolahan Joseph ;
Sadiku, Emmanuel Rotimi ;
Hamam, Yskandar ;
Ray, Suprakas Sinha .
MATERIALS TODAY-PROCEEDINGS, 2022, 62 :S141-S144
[4]   Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology [J].
Agatonovic-Kustrin, S ;
Glass, BD ;
Wisch, MH ;
Alany, RG .
PHARMACEUTICAL RESEARCH, 2003, 20 (11) :1760-1765
[5]   Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems [J].
Agatonovic-Kustrin, S ;
Alany, RG .
PHARMACEUTICAL RESEARCH, 2001, 18 (07) :1049-1055
[6]   Effect of co-morbidities on outcomes of first metatarsophalangeal joint fusion: A systematic review [J].
Agrawal, Somen ;
Sridhar, Sumedh ;
Harrison, Matt ;
Houchen-Wolloff, Linzy ;
Divall, Pip ;
Mangwani, Jitendra .
JOURNAL OF ORTHOPAEDICS, 2024, 58 :29-34
[7]   Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics [J].
Albuquerque, Joao ;
Moura, Catarina Costa ;
Sarmento, Bruno ;
Reis, Salette .
MOLECULES, 2015, 20 (06) :11103-11118
[8]   Using biospeckle and LIBS techniques with artificial intelligence to monitor phthalocyanine-gold nanoconjugates as a new drug delivery mediator for in vivo PDT [J].
Alexeree, Shaimaa M. I. ;
Youssef, Doaa ;
Abdel-Harith, Mohamed .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2023, 440
[9]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[10]   The pathogenesis of rheumatoid arthritis [J].
Alivernini, Stefano ;
Firestein, Gary S. ;
McInnes, Iain B. .
IMMUNITY, 2022, 55 (12) :2255-2270