Passively stable 0.7-octave microcombs in thin-film lithium niobate microresonators

被引:3
作者
Zhao, Zexing [1 ,2 ]
Wang, Chenyu [1 ,2 ]
Qiu, Jingyuan [3 ]
Ye, Zhilin [3 ]
Yin, Zhijun [3 ]
Wang, Zhenlin [1 ,2 ]
Jia, Kunpeng [1 ,2 ]
Tian, Xiao-Hui [1 ,2 ]
Xie, Zhenda [1 ,2 ]
Zhu, Shi-Ning [1 ,2 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Sch Elect Sci & Engn, Sch Phys,Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[3] Nanzhi Inst Adv Optoelect Integrat Technol Co Ltd, Nanjing 210093, Peoples R China
关键词
thin-film lithium niobate; soliton microcomb; photorefractive effect; SOLITON; GENERATION;
D O I
10.3788/COL202422.051301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The optical frequency comb based on microresonators (microcombs) is an integrated coherent light source and has the potential to promise a high-precision frequency standard; self-reference and a long-term stable microcomb are the keys to this realization. Here, we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin-film lithium niobate microresonator, and the single-soliton state can be accessed passively with long-term stability over 3 h. With such a robust broadband coherent comb source using thin-film lithium niobate, a fully stabilized microcomb can be expected for massive practical applications.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[2]   Self-referenced photonic chip soliton Kerr frequency comb [J].
Brasch, Victor ;
Lucas, Erwan ;
Jost, John D. ;
Geiselmann, Michael ;
Kippenberg, Tobias J. .
LIGHT-SCIENCE & APPLICATIONS, 2017, 6 :e16202-e16202
[3]   Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state [J].
Brasch, Victor ;
Geiselmann, Michael ;
Pfeiffer, Martin H. P. ;
Kippenberg, Tobias J. .
OPTICS EXPRESS, 2016, 24 (25) :29313-29321
[4]   Advances in lithium niobate photonics: development status and perspectives [J].
Chen, Guanyu ;
Li, Nanxi ;
Ng, Jun Da ;
Lin, Hong-Lin ;
Zhou, Yanyan ;
Fu, Yuan Hsing ;
Lee, Lennon Yao Ting ;
Yu, Yu ;
Liu, Ai-Qun ;
Danner, Aaron J. .
ADVANCED PHOTONICS, 2022, 4 (03)
[5]   Optical frequency combs: Coherently uniting the electromagnetic spectrum [J].
Diddams, Scott A. ;
Vahala, Kerry ;
Udem, Thomas .
SCIENCE, 2020, 369 (6501) :267-+
[6]   Lithium niobate microring with ultra-high Q factor above 108 [J].
Gao, Renhong ;
Yao, Ni ;
Guan, Jianglin ;
Deng, Li ;
Lin, Jintian ;
Wang, Min ;
Qiao, Lingling ;
Fang, Wei ;
Cheng, Ya .
CHINESE OPTICS LETTERS, 2022, 20 (01)
[7]   Near-octave lithium niobate soliton microcomb [J].
Gong, Zheng ;
Liu, Xianwen ;
Xu, Yuntao ;
Tang, Hong X. .
OPTICA, 2020, 7 (10) :1275-1278
[8]   High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond [J].
He, Mingbo ;
Xu, Mengyue ;
Ren, Yuxuan ;
Jian, Jian ;
Ruan, Ziliang ;
Xu, Yongsheng ;
Gao, Shengqian ;
Sun, Shihao ;
Wen, Xueqin ;
Zhou, Lidan ;
Liu, Lin ;
Guo, Changjian ;
Chen, Hui ;
Yu, Siyuan ;
Liu, Liu ;
Cai, Xinlun .
NATURE PHOTONICS, 2019, 13 (05) :359-+
[9]   Self-starting bi-chromatic LiNbO3 soliton microcomb [J].
He, Yang ;
Yang, Qi-Fan ;
Ling, Jingwei ;
Luo, Rui ;
Liang, Hanxiao ;
Li, Mingxiao ;
Shen, Boqiang ;
Wang, Heming ;
Vahala, Kerry ;
Lin, Qiang .
OPTICA, 2019, 6 (09) :1138-1144
[10]   Thermally controlled comb generation and soliton modelocking in microresonators [J].
Joshi, Chaitanya ;
Jang, Jae K. ;
Luke, Kevin ;
Ji, Xingchen ;
Miller, Steven A. ;
Klenner, Alexander ;
Okawachi, Yoshitomo ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS LETTERS, 2016, 41 (11) :2565-2568