Variational approach to impulsive Neumann problems with variable exponents and two parameters

被引:0
作者
Solimaninia, Arezoo [1 ]
Afrouzi, Ghasem A. [1 ]
Haghshenas, Hadi [1 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
来源
TAMKANG JOURNAL OF MATHEMATICS | 2024年 / 55卷 / 03期
关键词
Multiple solutions; impulsive boundary value problems; variable exponent spaces; critical point theory; variational methods; BOUNDARY-VALUE-PROBLEMS; MULTIPLE SOLUTIONS; DIFFERENTIAL-EQUATIONS; EXISTENCE; THEOREM;
D O I
10.5556/j.tkjm.55.2024.5134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the variational methods and critical-point theory, we are concerned with the existence results for a second-order impulsive boundary value problem involving an ordinary differential equation with p(x)-Laplacian operator, and Neumann conditions.
引用
收藏
页码:203 / 221
页数:19
相关论文
共 41 条
[1]   Three solutions for a quasilinear boundary value problem [J].
Afrouzi, G. A. ;
Heidarkhani, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3330-3336
[2]   Variational Approach to Fourth-Order Impulsive Differential Equations with Two Control Parameters [J].
Afrouzi, Ghasem A. ;
Hadjian, Armin ;
Radulescu, Vicentiu D. .
RESULTS IN MATHEMATICS, 2014, 65 (3-4) :371-384
[3]  
Agarwal RP, 2007, DYNAM SYST APPL, V16, P595
[4]  
[Anonymous], 1985, Nonlinear functional analysis and its applications
[5]  
Antontsev S. N., 2006, ANN U FERRARA, V52, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[6]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[7]   Three solutions for a quasilinear two-point boundary-value problem involving the one-dimensional p-laplacian [J].
Averna, D ;
Bonanno, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :257-270
[8]  
Averna D., 2003, Topol. Methods Nonlinear Anal., V22, P93
[9]   A MOUNTAIN PASS THEOREM FOR A SUITABLE CLASS OF FUNCTIONS [J].
Averna, Diego ;
Bonanno, Gabriele .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) :707-727
[10]   ONE-DIMENSIONAL NONLINEAR BOUNDARY VALUE PROBLEMS WITH VARIABLE EXPONENT [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina ;
Sciammetta, Angela .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02) :179-191