Noetherian rings of composite generalized power series

被引:0
作者
Oh, Dong Yeol [1 ]
机构
[1] Chosun Univ, Dept Math Educ, Gwangju 61452, South Korea
来源
OPEN MATHEMATICS | 2024年 / 22卷 / 01期
基金
新加坡国家研究基金会;
关键词
generalized power series ring; Noetherian ring; strictly ordered monoid;
D O I
10.1515/math-2024-0059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A. B be an extension of commutative rings with identity, S =,() a nonzero strictly ordered monoid, and S = S * \ 0{}. Let A + B = = f. B = f. A 0S S *,,.. {.. | ()}. In this study, we determine when the ring A + BS = *,.. is a Noetherian ring. We prove that when S is a strict monoid, if A + BS = *,.. is a Noetherian ring, then A is a Noetherian ring, B is a finitely generated A-module, and S is finitely generated. We also show that if B is a finitely generated A-module over a Noetherian ring A and S =,() is a positive strictly ordered monoid, which is finitely generated, then A + BS = *,.. is a Noetherian ring.
引用
收藏
页数:8
相关论文
共 14 条
  • [1] Noetherian generalized power series rings
    Brookfield, G
    [J]. COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) : 919 - 926
  • [2] FIELDS OF GENERALIZED POWER-SERIES
    ELLIOTT, GA
    RIBENBOIM, P
    [J]. ARCHIV DER MATHEMATIK, 1990, 54 (04) : 365 - 371
  • [3] Gilmer R., 1984, COMMUTATIVE SEMIGROU
  • [4] Higman G., 1952, Proc. Lond. Math. Soc., V3, P326, DOI [10.1112/plms/s3-2.1.326, DOI 10.1112/PLMS/S3-2.1.326]
  • [5] When is A+X B[[X]] noetherian?
    Hizem, S
    Benhissi, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) : 5 - 7
  • [6] Hizem S, 2009, Commutative Algebra and Its Applications, P259
  • [7] Kaplansky I., 1974, Commutative Rings
  • [8] Noetherian properties in composite generalized power series rings
    Lim, Jung Wook
    Oh, Dong Yeol
    [J]. OPEN MATHEMATICS, 2020, 18 : 1540 - 1551
  • [9] Chain conditions in special pullbacks
    Lim, Jung Wook
    Oh, Dong Yeol
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (13-14) : 655 - 659
  • [10] NOETHERIAN-RINGS OF GENERALIZED POWER-SERIES
    RIBENBOIM, P
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 79 (03) : 293 - 312