Differential Privacy-Based Location Privacy Protection for Edge Computing Networks

被引:1
作者
Zhang, Guowei [1 ,2 ]
Du, Jiayuan [1 ]
Yuan, Xiaowei [1 ]
Zhang, Kewei [1 ]
机构
[1] Qufu Normal Univ, Sch Cyber Sci & Engn, QuFu 273100, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Key Lab Comp Power Network & Informat Secur, Minist Educ, Jinan 250300, Peoples R China
关键词
mobile edge computing; differential privacy; location privacy protection; deep reinforcement learning; DEEP; CLOUD;
D O I
10.3390/electronics13173510
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile Edge Computing (MEC) has been widely applied in various Internet of Things (IoT) scenarios due to its advantages of low latency and low energy consumption. However, the offloading of tasks generated by terminal devices to edge servers inevitably raises privacy leakage concerns. Given the limited resources in MEC networks, this paper proposes a task scheduling strategy, named DQN-DP, to minimize location privacy leakage under the constraint of offloading costs. The strategy is based on a differential privacy location obfuscation probability density function. Theoretical analysis demonstrates that the probability density function employed in this study is valid and satisfies & varepsilon;-differential privacy in terms of security. Numerical results indicate that, compared to existing baseline approaches, the proposed DQN-DP algorithm effectively balances privacy leakage and offloading cost. Specifically, DQN-DP reduces privacy leakage by approximately 20% relative to baseline approaches.
引用
收藏
页数:17
相关论文
共 30 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
Bi J, 2024, IEEE INTERNET THINGS, V11, P16672, DOI 10.1109/JIOT.2024.3354348
[3]   Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks [J].
Bi, Suzhi ;
Huang, Liang ;
Wang, Hui ;
Zhang, Ying-Jun Angela .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) :7519-7537
[4]  
Cheng MX, 2018, ASIA S PACIF DES AUT, P129, DOI 10.1109/ASPDAC.2018.8297294
[5]   PPO2: Location Privacy-Oriented Task Offloading to Edge Computing Using Reinforcement Learning for Intelligent Autonomous Transport Systems [J].
Gao, Honghao ;
Huang, Wanqiu ;
Liu, Tong ;
Yin, Yuyu ;
Li, Youhuizi .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) :7599-7612
[6]   Collaborative Sensing in Internet of Things: A Comprehensive Survey [J].
He, Shibo ;
Shi, Kun ;
Liu, Chen ;
Guo, Bicheng ;
Chen, Jiming ;
Shi, Zhiguo .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (03) :1435-1474
[7]   Deep PDS-Learning for Privacy-Aware Offloading in MEC-Enabled IoT [J].
He, Xiaofan ;
Jin, Richeng ;
Dai, Huaiyu .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03) :4547-4555
[8]   Kullback-Leibler Divergence Metric Learning [J].
Ji, Shuyi ;
Zhang, Zizhao ;
Ying, Shihui ;
Wang, Liejun ;
Zhao, Xibin ;
Gao, Yue .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) :2047-2058
[9]   Blockchain-Enabled Federated Learning Data Protection Aggregation Scheme With Differential Privacy and Homomorphic Encryption in IIoT [J].
Jia, Bin ;
Zhang, Xiaosong ;
Liu, Jiewen ;
Zhang, Yang ;
Huang, Ke ;
Liang, Yongquan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (06) :4049-4058
[10]   On cloud security requirements, threats, vulnerabilities and countermeasures: A survey [J].
Kumar, Rakesh ;
Goyal, Rinkaj .
COMPUTER SCIENCE REVIEW, 2019, 33 :1-48