Robust Information Retrieval

被引:1
作者
Liu, Yu-An [1 ]
Zhang, Ruqing [1 ]
Guo, Jiafeng [1 ]
de Rijke, Maarten [2 ]
机构
[1] Univ Chinese Acad Sci, CAS Key Lab Network Data Sci & Technol, ICT, CAS, Beijing, Peoples R China
[2] Univ Amsterdam, Amsterdam, Netherlands
来源
PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024 | 2024年
基金
荷兰研究理事会;
关键词
Robustness in IR models; Adversarial robustness; OOD robustness;
D O I
10.1145/3626772.3661380
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Beyond effectiveness, the robustness of an information retrieval (IR) system is increasingly attracting attention. When deployed, a critical technology such as IR should not only deliver strong performance on average but also have the ability to handle a variety of exceptional situations. In recent years, research into the robustness of IR has seen significant growth, with numerous researchers offering extensive analyses and proposing myriad strategies to address robustness challenges. In this tutorial, we first provide background information covering the basics and a taxonomy of robustness in IR. Then, we examine adversarial robustness and out-of-distribution (OOD) robustness within IR-specific contexts, extensively reviewing recent progress in methods to enhance robustness. The tutorial concludes with a discussion on the robustness of IR in the context of large language models (LLMs), highlighting ongoing challenges and promising directions for future research. This tutorial aims to generate broader attention to robustness issues in IR, facilitate an understanding of the relevant literature, and lower the barrier to entry for interested researchers and practitioners.
引用
收藏
页码:3009 / 3012
页数:4
相关论文
共 50 条
[1]  
[Anonymous], 2024, ECIR, DOI DOI 10.1007/978-3-031-56060-619
[2]  
[Anonymous], 2023, ECIR, DOI DOI 10.1007/978-3-031-28238-639
[3]  
[Anonymous], 2009, SIGKDD, DOI DOI 10.1186/1471-2407-9-439
[4]  
[Anonymous], 2024, ECIR, DOI DOI 10.1007/978-3-031-56027-93
[5]  
Boucher Nicholas, 2023, arXiv
[6]   L2R: Lifelong Learning for First-stage Retrieval with Backward-Compatible Representations [J].
Cai, Yinqiong ;
Bi, Keping ;
Fan, Yixing ;
Guo, Jiafeng ;
Chen, Wei ;
Cheng, Xueqi .
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, :183-192
[7]  
Cai ZeFeng, 2022, 11 INT C LEARNING RE
[8]   Adversarial Web search [J].
Castillo C. ;
Davison B.D. .
Foundations and Trends in Information Retrieval, 2010, 4 (05) :377-486
[9]  
Chang Kai-Wei, 2021, P 2021 C EMPIRICAL M, P22
[10]   Continual Learning for Generative Retrieval over Dynamic Corpora [J].
Chen, Jiangui ;
Zhang, Ruqing ;
Guo, Jiafeng ;
de Rijke, Maarten ;
Chen, Wei ;
Fan, Yixing ;
Cheng, Xueqi .
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, :306-315