Enhancing Large Language Models with Human Expertise for Disease Detection in Electronic Health Records

被引:0
作者
Pan, Jie [1 ]
Lee, Seungwon [1 ]
Cheligeer, Cheligeer [1 ]
Martin, Elliot A. [1 ]
Riazi, Kiarash [1 ]
Quan, Hude [1 ]
Li, Na [1 ]
机构
[1] Univ Calgary, Community Hlth Sci, Calgary, AB, Canada
来源
2024 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH 2024 | 2024年
基金
加拿大健康研究院;
关键词
disease detection; natural language processing; disease phenotyping; electronic medical records; large language models; SYSTEMS;
D O I
10.1109/ICDH62654.2024.00031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Electronic health records (EHR) are widely available to complement administrative data-based disease surveillance and healthcare performance evaluation. Defining conditions from EHR is labour-intensive, requiring advanced medical informatics knowledge. We linked a cardiac registry cohort in 2015 with an EHR system in a city in Canada. We developed a throughput pipeline that leverages a generative large language model (LLM) to analyze, understand, and interpret EHR notes through clinical experts' designed prompts and rules. The pipeline was applied to detect diabetes, hypertension, and acute myocardial infarction from the notes. The performance was compared against clinician-validated diagnoses as the reference standard.
引用
收藏
页码:129 / 131
页数:3
相关论文
共 17 条
[1]   Electronic health record-based disease surveillance systems: A systematic literature review on challenges and solutions [J].
Aliabadi, Ali ;
Sheikhtaheri, Abbas ;
Ansari, Hossein .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (12) :1977-1986
[2]   Leveraging Large Language Models for Decision Support in Personalized Oncology [J].
Benary, Manuela ;
Wang, Xing David ;
Schmidt, Max ;
Soll, Dominik ;
Hilfenhaus, Georg ;
Nassir, Mani ;
Sigler, Christian ;
Knoedler, Maren ;
Keller, Ulrich ;
Beule, Dieter ;
Keilholz, Ulrich ;
Leser, Ulf ;
Rieke, Damian T. .
JAMA NETWORK OPEN, 2023, 6 (11) :E2343689
[3]   Can ChatGPT provide intelligent diagnoses? A comparative study between predictive models and ChatGPT to define a new medical diagnostic bot [J].
Caruccio, Loredana ;
Cirillo, Stefano ;
Polese, Giuseppe ;
Solimando, Giandomenico ;
Sundaramurthy, Shanmugam ;
Tortora, Genoveffa .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
[4]   AutoCriteria: a generalizable clinical trial eligibility criteria extraction system powered by large language models [J].
Datta, Surabhi ;
Lee, Kyeryoung ;
Paek, Hunki ;
Manion, Frank J. ;
Ofoegbu, Nneka ;
Du, Jingcheng ;
Li, Ying ;
Huang, Liang-Chin ;
Wang, Jingqi ;
Lin, Bin ;
Xu, Hua ;
Wang, Xiaoyan .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (02) :375-385
[5]   The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversation With ChatGPT and a Call for Papers [J].
Eysenbach, Gunther .
JMIR MEDICAL EDUCATION, 2023, 9
[6]   Achieving a Nationwide Learning Health System [J].
Friedman, Charles P. ;
Wong, Adam K. ;
Blumenthal, David .
SCIENCE TRANSLATIONAL MEDICINE, 2010, 2 (57)
[7]   The digital phenotype [J].
Jain, Sachin H. ;
Powers, Brian W. ;
Hawkins, Jared B. ;
Brownstein, John S. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :462-463
[8]   Exploring the reliability of inpatient EMR algorithms for diabetes identification [J].
Lee, Seungwon ;
Martin, Elliot A. ;
Pan, Jie ;
Eastwood, Cathy A. ;
Southern, Danielle A. ;
Campbell, David J. T. ;
Shaheen, Abdel Aziz ;
Quan, Hude ;
Butalia, Sonia .
BMJ HEALTH & CARE INFORMATICS, 2023, 30 (01)
[9]   CREATE: A New Data Resource to Support Cardiac Precision Health [J].
Lee, Seungwon ;
Li, Bing ;
Martin, Elliot A. ;
D'Souza, Adam G. ;
Jiang, Jason ;
Doktorchik, Chelsea ;
Southern, Danielle A. ;
Lee, Joon ;
Wiebe, Natalie ;
Quan, Hude ;
Eastwood, Cathy A. .
CJC OPEN, 2021, 3 (05) :639-645
[10]  
Martin Elliot A, 2023, CMAJ Open, V11, pE131, DOI 10.9778/cmajo.20210170