Chemical Looping Ammonia Decomposition Mediated by Alkali Metal and Amide Pairs for H2 Production and Thermal Energy Storage

被引:7
作者
Feng, Sheng [1 ]
Gao, Wenbo [1 ,2 ]
Wang, Runze [1 ,2 ]
Guan, Yeqin [1 ,2 ]
Wu, Han [1 ,2 ]
Wang, Qianru [1 ,2 ]
Cao, Hujun [1 ,2 ]
Liu, Lin [1 ,2 ]
Guo, Jianping [1 ,2 ]
Chen, Ping [1 ,2 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
alkali metal; amide; ammonia decomposition; chemical looping; thermal energy storage; MANGANESE NITRIDE; LOW-PRESSURE; TRANSITION; COLLECTORS; CATALYSTS; SYSTEMS; RU;
D O I
10.1002/aenm.202401252
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ammonia decomposition to H-2 (ADH) is one of the key reactions in the ammonia-based energy system. Recent research has been focused on developing more active and affordable catalysts, however, few can operate below 500 degrees C and typically require the expensive metal ruthenium. Herein, a fundamentally different thermal ADH via a chemical looping process (CLADH) mediated by alkali metal and its amide pairs, which can work under lower temperatures than the catalytic process, is reported. This CLADH consists of two steps: 1) Ammoniation step - NH3 reacts with Na or K to generate NaNH2 or KNH2, respectively, accompanied by releasing one-third of H-2 in NH3 at room temperature; 2) Decomposition step - NaNH2 or KNH2 decomposes to N-2 and H-2 with the regeneration of Na or K which can be performed above 275 degrees C. Additionally, due to the significant enthalpy change in the two-step reactions of this CLADH, -78.0 kJ mol(-1) for the first step and 123.9 kJ mol(-1) for the second, using the Na and NaNH2 pair-suggest potential for thermal energy storage. This work not only reports an alternative route to produce H-2 from NH3, but also unravels the potential of chemical looping process for thermal energy storage.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Hydride-based thermal energy storage [J].
Adams, Marcus ;
Buckley, Craig E. ;
Busch, Markus ;
Bunzel, Robin ;
Felderhoff, Michael ;
Heo, Tae Wook ;
Humphries, Terry D. ;
Jensen, Torben R. ;
Klug, Julian ;
Klug, Karl H. ;
Moller, Kasper T. ;
Paskevicius, Mark ;
Peil, Stefan ;
Peinecke, Kateryna ;
Sheppard, Drew A. ;
Stuart, Alastair D. ;
Urbanczyk, Robert ;
Wang, Fei ;
Walker, Gavin S. ;
Wood, Brandon C. ;
Weiss, Danny ;
Grant, David M. .
PROGRESS IN ENERGY, 2022, 4 (03)
[2]   Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition [J].
Cao, Hujun ;
Guo, Jianping ;
Chang, Fei ;
Pistidda, Claudio ;
Zhou, Wei ;
Zhang, Xilun ;
Santoru, Antonio ;
Wu, Hui ;
Schell, Norbert ;
Niewa, Rainer ;
Chen, Ping ;
Klassen, Thomas ;
Dornheim, Martin .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (41) :9766-9771
[3]   Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis [J].
Chang, Fei ;
Tezsevin, Ilker ;
de Rijk, Jan Willem ;
Meeldijk, Johannes D. ;
Hofmann, Jan P. ;
Er, Suleyman ;
Ngene, Peter ;
de Jongh, Petra E. .
NATURE CATALYSIS, 2022, 5 (03) :222-230
[4]   Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion [J].
Chang, Fei ;
Gao, Wenbo ;
Guo, Jianping ;
Chen, Ping .
ADVANCED MATERIALS, 2021, 33 (50)
[5]   Effect of Pore Confinement of NaNH2 and KNH2 on Hydrogen Generation from Ammonia [J].
Chang, Fei ;
Wu, Han ;
van der Pluijm, Robby ;
Guo, Jianping ;
Ngene, Peter ;
de Jongh, Petra E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (35) :21487-21496
[6]   Influence of alkali metal amides on the catalytic activity of manganese nitride for ammonia decomposition [J].
Chang, Fei ;
Guo, Jianping ;
Wu, Guotao ;
Wang, Peikun ;
Yu, Pei ;
Chen, Ping .
CATALYSIS TODAY, 2017, 286 :141-146
[7]   Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector [J].
Chatterjee, Sudipta ;
Parsapur, Rajesh Kumar ;
Huang, Kuo-Wei .
ACS ENERGY LETTERS, 2021, 6 (12) :4390-4394
[8]   Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review [J].
Chen, Chongqi ;
Wu, Kai ;
Ren, Hongju ;
Zhou, Chen ;
Luo, Yu ;
Lin, Li ;
Au, Chaktong ;
Jiang, Lilong .
ENERGY & FUELS, 2021, 35 (15) :11693-11706
[9]   Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation [J].
Chen, Sai ;
Zeng, Liang ;
Mu, Rentao ;
Xiong, Chuanye ;
Zhao, Zhi-Jian ;
Zhao, Chengjie ;
Pei, Chunlei ;
Peng, Luming ;
Luo, Jun ;
Fan, Liang-Shih ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (47) :18653-18657
[10]   State of the art on the high-temperature thermochemical energy storage systems [J].
Chen, Xiaoyi ;
Zhang, Zhen ;
Qi, Chonggang ;
Ling, Xiang ;
Peng, Hao .
ENERGY CONVERSION AND MANAGEMENT, 2018, 177 :792-815