Active impedance control based adaptive locomotion for a bionic hexapod robot

被引:2
作者
Zhu, Yaguang [1 ,2 ]
Liu, Chunchao [1 ]
Yuan, Pengfei [1 ]
Li, Dong [1 ]
机构
[1] Changan Univ, Key Lab Rd Construct Technol & Equipment MOE, Xian 710064, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Multimodal Cognit Comp, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
active impedance control; attitude control; foot force control; hexapod robot; FORCE TRACKING; WALKING;
D O I
10.1002/rob.22412
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In recent years, with the continuous development of human exploration of the natural world, there has been a growing demand across various fields for robots capable of free movement in diverse environments. In this study, we address the issue of compliant control for a hexapod robot in diverse environments and propose a novel control method based on an adaptive impedance model for position control. Our approach enables the hexapod robot to stabilize foot force on complex terrains while preserving balance and body height. Specifically, we analyze the algorithm's parameters and stability by establishing the hexapod robot's structural and impedance control models. To tackle this challenge, we introduce an adaptive impedance control algorithm that estimates environmental parameters using Lyapunov's asymptotic stability theorem and achieves tracking of actual foot-end forces to desired foot forces. Furthermore, to ensure body stability and height, we incorporate attitude feedback and body feedback. Experimental results from foot force control experiments conducted on a multilegged robot demonstrate that our proposed algorithm enhances the adaptability and robustness of the robot. This research holds significant implications for the stable control of hexapod robots in complex environments and has promising practical applications.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 40 条
[1]  
Albu-Schäffer A, 2003, IEEE INT CONF ROBOT, P3704
[2]  
Bernhardt M, 2005, INT C REHAB ROBOT, P536
[3]   A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots [J].
Calanca, Andrea ;
Muradore, Riccardo ;
Fiorini, Paolo .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (02) :613-624
[4]   Target tracking control of a bionic mantis shrimp robot with closed-loop central pattern generators [J].
Chen, Gang ;
Xu, Yidong ;
Yang, Xin ;
Hu, Huosheng ;
Cheng, Hao ;
Zhu, Lvyuan ;
Zhang, Jingjing ;
Shi, Jianwei ;
Chai, Xinxue .
OCEAN ENGINEERING, 2024, 297
[5]   Autonomous gait switching method and experiments of a hexapod walking robot for Mars environment with multiple terrains [J].
Chen, Gang ;
Han, Yang ;
Li, Yuehua ;
Shen, Jiatao ;
Tu, Jiajun ;
Yu, Zhicheng ;
Zhang, Junrui ;
Cheng, Hao ;
Zhu, Lvyuan ;
Dong, Fei .
INTELLIGENT SERVICE ROBOTICS, 2024, 17 (03) :533-553
[6]   Control strategy of stable walking for a hexapod wheel-legged robot [J].
Chen, Zhihua ;
Wang, Shoukun ;
Wang, Junzheng ;
Xu, Kang ;
Lei, Tao ;
Zhang, Hao ;
Wang, Xiuwen ;
Liu, Daohe ;
Si, Jinge .
ISA TRANSACTIONS, 2021, 108 :367-380
[7]   Trends in the Control of Hexapod Robots: A Survey [J].
Coelho, Joana ;
Ribeiro, Fernando ;
Dias, Bruno ;
Lopes, Gil ;
Flores, Paulo .
ROBOTICS, 2021, 10 (03)
[8]  
Craig J.J., 2006, Introduction to robotics
[9]   Adaptive variable impedance control for dynamic contact force tracking in uncertain environment [J].
Duan Jinjun ;
Gan Yahui ;
Chen Ming ;
Dai Xianzhong .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 102 :54-65
[10]  
Fickinger A., 2021, ARXIV