CO2/Water Interfacial Tension under Induced Acidic Conditions Employing Dissipative Particle Dynamics Simulations

被引:0
|
作者
Ali, Faizan [1 ,2 ]
Negash, Berihun Mamo [1 ,5 ]
Siddiqui, Numair Ahmed [3 ]
Ridha, Syahrir [1 ,5 ]
Khosravi, Vahid [4 ]
Haq, Izhar Ul [3 ]
机构
[1] Univ Teknol PETRONAS, Petr Engn Dept, Bandar Seri Iskandar 32610, Perak Darul Rid, Malaysia
[2] NED Univ Engn & Technol, Dept Petr Engn, Karachi 75270, Pakistan
[3] Univ Teknol PETRONAS, Dept Petr Geosci, Bandar Seri Iskandar 32610, Perak Darul Rid, Malaysia
[4] UCSI Univ, Fac Engn Technol & Built Environm, Dept Chem & Petr Engn, Kuala Lumpur 56000, Malaysia
[5] Univ Teknol PETRONAS, Inst Hydrocarbon Recovery IHR, Bandar Seri Iskandar 32610, Perak, Malaysia
关键词
MOLECULAR-DYNAMICS; CARBON-DIOXIDE; TEMPERATURE CONDITIONS; SOLUBILITY PARAMETER; WATER/OIL INTERFACE; ROCK WETTABILITY; CONTACT ANGLES; CO2; PRESSURE; SYSTEM;
D O I
10.1021/acs.energyfuels.4c02529
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Evaluating the interfacial tension (IFT) between CO2 and water is necessary for assessing the structural integrity of the caprock during geological carbon storage. While prior studies have examined the IFT of the CO2-water system, there are limited studies on how the solubility of CO2 in aquifer water, that leads to acidic conditions, influences the IFT of CO2-water system. This study employed dissipative particle dynamics (DPD) simulations to investigate the IFT of a CO2-water system under situations commonly found in deep saline aquifers. The interaction parameters associated with the DPD force-field were determined through molecular dynamic simulation. The IFT is calculated through the Irving-Kirkwood equation, which considers both normal and tangential forces interacting on the surface of the interface to calculate IFT. Furthermore, the IFT of CO2-water system has also been analyzed using qualitative methods such as radius of gyration, interfacial thickness, and mean square displacement (MSD). The outcomes of the present investigation indicate that the IFT of the CO2-water system decreases when exposed to acidic surroundings, irrespective of the conditions of the aquifer. For instance, the IFT experienced a significant decrease from 49.52 mN/m under nonacidic situations to 47.71 mN/m under acidic conditions at a pressure of 15 MPa and a temperature of 353 K. The qualitative investigation demonstrated that acidic conditions cause a reduction in the radius of gyration and MSD of both CO2 and water, while causing an overall increase in their interfacial width. Furthermore, the IFT of the CO2 and water system decreased considerably as the pressure increased. However, the IFT exhibits a direct relation to both the temperature and the amount of salts in the brine. This study illustrates that the effectiveness of caprock in holding CO2 is reduced by induced acidic conditions. Consequently, the probability of CO2 being released from aquifers is increased.
引用
收藏
页码:15515 / 15532
页数:18
相关论文
共 50 条
  • [21] Interfacial Tension of CO2 and Organic Liquid under High Pressure and Temperature
    Yang, Zihao
    Li, Mingyuan
    Peng, Bo
    Lin, Meiqin
    Dong, Zhaoxia
    Ling, Yong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2014, 22 (11-12) : 1302 - 1306
  • [22] Interfacial tension of CO2 and crude oils under high pressure and temperature
    Yang, Zihao
    Liu, Xiaolei
    Hua, Zhao
    Ling, Yong
    Li, Mingyuan
    Lin, Meiqin
    Dong, Zhaoxia
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 482 : 611 - 616
  • [23] Effect of TBAB and SDS surfactants on the interfacial tension of CO2 Hydrate in water
    Sarlak, Hamid
    Azimi, Alireza
    Ghomshe, Seyed Mostafa Tabatabaee
    Mirzaei, Masoomeh
    EURASIAN CHEMICAL COMMUNICATION, 2020, 2 (03): : 319 - 328
  • [24] The Role of Protons in CO2 Reduction on Gold under Acidic Conditions
    Wu, Weixing
    Wang, Ying
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (14) : 11662 - 11666
  • [25] Molecular dynamics simulations of the interfacial tension and the solubility of brine/H2 /CO2 systems: Implications for underground hydrogen storage
    Adam, Abdelateef M.
    Bahamon, Daniel
    Al Kobaisi, Mohammed
    Vega, Lourdes F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 1344 - 1354
  • [26] Thermodiffusion of CO2 in Water by Nonequilibrium Molecular Dynamics Simulations
    Coelho, Felipe M.
    Franco, Luis F. M.
    Firoozabadi, Abbas
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (12): : 2749 - 2760
  • [27] Molecular Dynamics Simulations of the CO2-Water-Silica Interfacial Systems
    Tsuji, Shinya
    Liang, Yunfeng
    Kunieda, Makoto
    Takahashi, Satoru
    Matsuoka, Toshifumi
    GHGT-11, 2013, 37 : 5435 - 5442
  • [28] The role of CO2 and ion type in the dynamic interfacial tension of acidic crude oil/carbonated brine
    Mostafa Lashkarbolooki
    Ali Zeinolabedini Hezave
    Shahab Ayatollahi
    Petroleum Science, 2019, 16 (04) : 850 - 858
  • [29] The role of CO2 and ion type in the dynamic interfacial tension of acidic crude oil/carbonated brine
    Lashkarbolooki, Mostafa
    Hezave, Ali Zeinolabedini
    Ayatollahi, Shahab
    PETROLEUM SCIENCE, 2019, 16 (04) : 850 - 858
  • [30] CO2/water interfacial tensions under pressure and temperature and conditions of CO2 geological storage (vol 48, pg 736, 2007)
    Chiquet, Pierre
    Daridon, Jean-Luc
    Broseta, Daniel
    Thibeau, Sylvain
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (02) : 431 - 431