Tangningtongluo Tablet ameliorates pancreatic damage in diabetic mice by inducing autophagy and inhibiting the PI3K/Akt/mTOR signaling pathway

被引:0
作者
Ren, Ying [1 ]
Hu, Xiangka [2 ]
Qi, Mushuang [1 ]
Zhu, Wanjun [1 ]
Li, Jin [3 ,4 ]
Yang, Shuyu [3 ,4 ]
Dai, Chunmei [2 ]
机构
[1] Jinzhou Med Univ, Coll Basic Med, Jinzhou 121001, Liaoning, Peoples R China
[2] Jinzhou Med Univ, Inst Mat Med, Jinzhou 121001, Liaoning, Peoples R China
[3] Xiamen Univ, Affiliated Hosp 1, Dept Hematol, Xiamen 361003, Fujian, Peoples R China
[4] Xiamen Univ, Sch Med, Xiamen 361005, Fujian, Peoples R China
关键词
Tangningtongluo Tablet; Network pharmacology; PI3K/Akt/mTOR; Autophagy; Diabetes; NETWORK PHARMACOLOGY; BETA-CELLS; APOPTOSIS; POLYSACCHARIDE; RETINOPATHY; STRESS; TARGET; TREND;
D O I
10.1016/j.intimp.2024.113032
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Diabetes is a metabolic disease characterized by hyperglycaemia. Tangningtongluo Tablet (TNTL) is an inpatient formula extensively utilized to treat diabetes mellitus (DM), but the protective mechanism is not clear. This study aimed to investigate the relevant mechanisms by which TNTL affects pancreatic damage in diabetic mice and autophagy. Methods: The impact of TNTL on pancreatic damage in diabetic mice in vitro and in vivo was investigated via glucose and lipid metabolism analyses, HE staining, CCK-8, TUNEL staining, Annexin V/PI, and Western blotting. Molecular docking and Western blotting were used to verify the results of network pharmacological analysis, which was carried out to explore the mechanism by which TNTL affects DM. The autophagosome levels were visualized via RFP-GFP-LC3 and transmission electron microscopy, and lysosomal function was evaluated via Lysotracker red staining. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the expression of the autophagy proteins LC3, p62 and LAMP2. Results: Compared with the model group, TNTL protected pancreas from oxidative stress, decreased the level of MDA, increased the levels of SOD and GSH-px, induced the occurrence of autophagy and decreased the levels of apoptotic factors. Moreover, TNTL inhibited the protein expression of p-PI3K, p-Akt and p-mTOR, increased the levels of LC3 and LAMP2 and decreased the level of p62, and the autophagy inhibitor CQ blocked the protective effect of TNTL on pancreatic damage in diabetic mice. Conclusion: These results demonstrated that TNTL ameliorated pancreatic damage in diabetic mice by inhibiting the PI3K/Akt/mTOR signaling and regulating autophagy.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Aloe-Emodin Ameliorates Renal Fibrosis Via Inhibiting PI3K/Akt/mTOR Signaling Pathway In Vivo and In Vitro
    Dou, Fang
    Liu, YueTong
    Liu, Limin
    Wang, Jingwen
    Sun, Ting
    Mu, Fei
    Guo, Qiyan
    Guo, Chao
    Jia, Na
    Liu, Wenxin
    Ding, Yi
    Wen, Aidong
    REJUVENATION RESEARCH, 2019, 22 (03) : 218 - 229
  • [22] PSORI-CM02 ameliorates psoriasis in vivo and in vitro by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway
    Lu Yue
    Wang Ailin
    Zhang Jinwei
    Li Leng
    Wei Jianan
    Li Li
    Chen Haiming
    Han Ling
    Lu Chuanjian
    PHYTOMEDICINE, 2019, 64
  • [23] Kaempferol Inhibits Cervical Cancer Cells by Inducing Apoptosis and Autophagy via Inactivation of the PI3K/AKT/mTOR Signaling Pathway
    Choi, Eun-young
    Han, Eun-ji
    Jeon, Su-ji
    Lee, Sang-woo
    Moon, Jun-mo
    Jung, Soo-hyun
    Park, Young-seok
    Park, Byung-kwon
    Kim, Byeong-soo
    Kim, Sang-ki
    Jung, Ji-youn
    ANTICANCER RESEARCH, 2024, 44 (07) : 2961 - 2972
  • [24] Autophagy of macrophages is regulated by PI3k/Akt/mTOR signalling in the development of diabetic encephalopatny
    Wang, Beiyun
    Zhong, Yuan
    Li, Qinjie
    Cui, Liang
    Huang, Gaozhong
    AGING-US, 2018, 10 (10): : 2772 - 2782
  • [25] Dendrobium mixture attenuates renal damage in rats with diabetic nephropathy by inhibiting the PI3K/Akt/mTOR pathway
    Chen, Yong
    Zheng, Yan Fang
    Lin, Xiao Hui
    Zhang, Jie Ping
    Lin, Fan
    Shi, Hong
    MOLECULAR MEDICINE REPORTS, 2021, 24 (02)
  • [26] Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/ mTOR signaling pathway
    Ou, Yi
    Zhang, Wenjuan
    Chen, Shaopeng
    Deng, Haihua
    OPEN MEDICINE, 2021, 16 (01): : 1286 - 1298
  • [27] Sodium cantharidate promotes autophagy in breast cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway
    Pang, Jin-Long
    Xu, Lian-Song
    Zhao, Qian
    Niu, Wen-Wen
    Rong, Xiang-Yu
    Li, Shan-Shan
    Li, Xian
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [28] Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway
    Lingjie Fu
    Wen Wu
    Xiaojiang Sun
    Pu Zhang
    Calcified Tissue International, 2020, 107 : 60 - 71
  • [29] Hydrogen sulphide promotes osteoclastogenesis by inhibiting autophagy through the PI3K/AKT/mTOR pathway
    Ma, Jun
    Du, Di
    Liu, Jia
    Guo, Lei
    Li, Yongchuan
    Chen, Aimin
    Ye, TianWen
    JOURNAL OF DRUG TARGETING, 2020, 28 (02) : 176 - 185
  • [30] S-ketamine promotes autophagy and alleviates neuropathic pain by inhibiting PI3K/Akt/mTOR signaling pathway
    Jia Han
    Xianjie Zhang
    Leqiang Xia
    Ou Liao
    Qiulan Li
    Molecular & Cellular Toxicology, 2023, 19 : 81 - 88