A second order difference method combined with time two-grid algorithm for two-dimensional time-fractional Fisher equation
被引:0
|
作者:
Yang, Wenguang
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
Yang, Wenguang
[1
]
Wang, Zhibo
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
Wang, Zhibo
[1
,2
]
Ou, Caixia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Macau, Dept Math, Macau, Peoples R ChinaGuangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
Ou, Caixia
[3
]
机构:
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Guangzhou, Guangdong, Peoples R China
Time two-grid algorithm;
time-fractional Fisher equation;
cut-off function method;
stability and convergence;
FINITE-ELEMENT-METHOD;
SCHEME;
D O I:
10.1080/00207160.2024.2389859
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, a finite difference (FD) scheme based on time two-grid algorithm is proposed for solving the two-dimensional time-fractional Fisher equation (2D-TFFE). Firstly, the Caputo fractional derivative and the spatial derivative are discretized by the $ L2-1_\sigma $ L2-1 sigma formula and the central difference formula, respectively. In order to improve the efficiency of computation, the time two-grid algorithm is then constructed. Secondly, based on the cut-off function technic, stability and convergence of the time two-grid FD scheme are obtained by the energy method, and the global convergence order is $ O(\tau _{F}<^>2 +\tau _{C}<^>4 +h_x<^>2 +h_y<^>2) $ O(tau F2+tau C4+hx2+hy2), where $ \tau _{F} $ tau F and $ \tau _{C} $ tau C represent time-step sizes on the fine and coarse grid, respectively, while $ h_x $ hx and $ h_y $ hy represent the space-step sizes. Finally, numerical experiments are presented to show the feasibility and efficiency of the algorithm.
机构:
Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
Tan, Zhijun
Zeng, Yunhua
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Peoples R ChinaSun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
机构:
Hunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R ChinaHunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R China
Tian, Zhikun
Chen, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaHunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R China
Chen, Yanping
Huang, Yunqing
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Coputat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R ChinaHunan Inst Engn, Sch Computat Sci & Elect, Xiangtan 411104, Hunan, Peoples R China