Refined Modeling of Heterogeneous Medium for Ground-Penetrating Radar Simulation

被引:1
作者
Liu, Hai [1 ]
Dai, Dingwu [1 ]
Zou, Lilong [2 ]
He, Qin [1 ]
Meng, Xu [1 ]
Chen, Junhong [1 ]
机构
[1] Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Univ West London, Sch Comp & Engn, London W5 5RF, England
关键词
ground-penetrating radar (GPR); numerical model; finite-difference time domain (FDTD); asphalt mixtures; RANDOM-SEQUENTIAL ADSORPTION; FINITE-ELEMENT; GPR; FREQUENCY;
D O I
10.3390/rs16163010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ground-penetrating radar (GPR) has been widely used for subsurface detection and testing. Numerical simulations of GPR signal are commonly performed to aid the interpretation of subsurface structures and targets in complex environments. To enhance the accuracy of GPR simulations on heterogeneous medium, this paper proposes a hybrid modeling method that combines the discrete element method with a component fusion strategy (DEM-CFS). Taking the asphalt pavement as an example, three 3D stochastic models with distinctly different porosities are constructed by the DEM-CFS method. Firstly, the DEM is utilized to establish the spatial distribution of random coarse aggregates. Then, the component fusion strategy is employed to integrate other components into the coarse aggregate skeleton. Finally, the GPR response of the constructed asphalt models is simulated using the finite-difference time-domain method. The proposed modeling method is validated through both numerical and laboratory experiments and demonstrates high precision. The results indicate that the proposed modeling method has high accuracy in predicting the dielectric constant of heterogeneous media, as generated models are closely aligned with real-world conditions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] The search for graves with ground-penetrating radar in Connecticut
    Doolittle, James A.
    Bellantoni, Nicholas F.
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2010, 37 (05) : 941 - 949
  • [22] Estimation of the Soil Water Content Using the Early Time Signal of Ground-Penetrating Radar in Heterogeneous Soil
    Lu, Qi
    Liu, Kexin
    Zeng, Zhaofa
    Liu, Sixin
    Li, Risheng
    Xia, Longfei
    Guo, Shilong
    Li, Zhilian
    REMOTE SENSING, 2023, 15 (12)
  • [23] Reliability Analysis of Ground-Penetrating Radar for the Detection of Subsurface Delamination
    Sultan, Ali A.
    Washer, Glenn A.
    JOURNAL OF BRIDGE ENGINEERING, 2018, 23 (02)
  • [24] Numerical modeling of ground-penetrating radar in 2-D using MATLAB
    Irving, James
    Knight, Rosemary
    COMPUTERS & GEOSCIENCES, 2006, 32 (09) : 1247 - 1258
  • [25] Simulations of ground-penetrating radars over lossy and heterogeneous grounds
    Gürel, L
    Oguz, U
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (06): : 1190 - 1197
  • [26] The Study of the Ice Crossings on the Rivers by the Ground-Penetrating Radar
    Fedorov, M. P.
    Fedorova, L. L.
    Savvin, D. V.
    Kulizhnikov, A. M.
    PROCEEDINGS OF 2016 16TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR), 2016,
  • [27] Determination of Background Distribution for Ground-Penetrating Radar Data
    Gurbuz, Ali Cafer
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (04) : 544 - 548
  • [28] Detection of Root Orientation Using Ground-Penetrating Radar
    Liu, Qixin
    Cui, Xihong
    Liu, Xinbo
    Chen, Jin
    Chen, Xuehong
    Cao, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (01): : 93 - 104
  • [29] Snow density variations:: consequences for ground-penetrating radar
    Lundberg, A
    Richardson-Näslund, C
    Andersson, C
    HYDROLOGICAL PROCESSES, 2006, 20 (07) : 1483 - 1495
  • [30] Phase Spectrum of Signals in Ground-Penetrating Radar Applications
    Sugak, Vladimir G.
    Sugak, Alexander V.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04): : 1760 - 1767