Excellent energy storage performance of Nd-modified lead-free AgNbO3 ceramics via triple collaborative optimization

被引:2
|
作者
Yang, Yulong [1 ,2 ]
Zha, Jielin [1 ,2 ]
Lu, Xiaomei [1 ,2 ,3 ]
Huang, Fengzhen [1 ,2 ,3 ]
Ying, Xuenong [1 ,2 ,3 ]
Zhu, Jinsong [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Phys Sch, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Lead-free ceramics; Antiferroelectricity; AgNbO3; Energy storage performance; FREE ANTIFERROELECTRIC CERAMICS; PHASE-STABILITY; DENSITY; TRANSITIONS; POLYMER; QUALITY;
D O I
10.1016/j.nanoen.2024.110242
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lead-free Dielectric capacitors that possess high power density as well as swift charging/discharging speed are in tremendous requirement in pulse/high power fields, but the lower recovery energy density and efficiency restrict their applications. Herein, via triple collaborative optimization, we designed Nd-modified AgNbO3 antiferroelectric ceramics with excellent energy storage performance. First, Nd3+ ions are smaller than Ag+ ions, which effectively inhibits cation displacements and the tilting of oxygen octahedra, leading to an optimized phase composition, the suppressed ferroelectricity and enhanced antiferroelectricity. Second, the valence of Nd3+ ions are higher than that of Ag+ ions, which help to lower the content of oxygen vacancies. Third, the random substitution of Nd3+, extrinsic ions, cause the chemical disorder, thus dwindling the grain size. Both of the latter could boost the breakdown field. Eventually, the synchronously boosted energy density of 7.16 J/cm(3) and efficiency of 72 %, together with excellent frequency stability, temperature tolerance, ultrafast charging/discharging time of 45 ns and superhigh power density of 354.2 MW/cm(3), are achieved in Ag0.91Nd0.03NbO3. All these merits manifest Nd- AgNbO3 as a promising candidate for lead-free high-power energy storage devices. Our work brings forward a good reference for developing the capabilities of antiferroelectric capacitors.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics
    Mao, Shuaifei
    Luo, Nengneng
    Han, Kai
    Feng, Qin
    Chen, Xiyong
    Peng, Biaolin
    Liu, Laijun
    Hu, Changzheng
    Zhou, Huanfu
    Toyohisa, Fujita
    Wei, Yuezhou
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (10) : 7731 - 7741
  • [42] Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics
    Shuaifei Mao
    Nengneng Luo
    Kai Han
    Qin Feng
    Xiyong Chen
    Biaolin Peng
    Laijun Liu
    Changzheng Hu
    Huanfu Zhou
    Fujita Toyohisa
    Yuezhou Wei
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 7731 - 7741
  • [43] Energy storage performance of Nd3+-doped BiFeO3-BaTiO3-based lead-free ceramics
    Khesro, Amir
    Khan, Fawad Ahmad
    Muhammad, Raz
    Ali, Asif
    Khan, Majid
    Wang, Dawei
    CERAMICS INTERNATIONAL, 2022, 48 (20) : 29938 - 29943
  • [44] Microstructure-driven excellent energy storage NaNbO3-based lead-free ceramics
    Yang, Weiwei
    Zeng, Huarong
    Yan, Fei
    Qian, Jin
    Zhu, Kun
    Zhao, Kunyu
    Li, Guorong
    Zhai, Jiwei
    CERAMICS INTERNATIONAL, 2022, 48 (24) : 37476 - 37482
  • [45] Achieving excellent energy storage properties in lead-free ceramics via competing FE/AFE phase coexistence
    Lv, Zhongqian
    Han, Bing
    Liu, Zhen
    Guo, Shaobo
    Dai, Kai
    Cao, Fei
    Hu, Zhigao
    Wang, Genshui
    ENERGY STORAGE MATERIALS, 2025, 77
  • [46] Enhanced breakdown strength via a codoping strategy and tape-casting technique: An approach for excellent energy storage performance in lead-free AgNbO3-based antiferroelectrics
    Yang, Bingqing
    Xu, Wei
    Zhang, Yu
    Xu, Zedong
    Wu, Shizhe
    Wu, Xiao
    Zhao, Chunlin
    Lin, Tengfei
    Gao, Min
    Lin, Cong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (07)
  • [47] Outstanding comprehensive energy storage performance in BNT-based lead-free ceramics via synergistic optimization strategy
    Li, Zixin
    Zhou, Wenjie
    Guo, Jinming
    Lv, Xinye
    Lin, Shuxin
    Li, Yilang
    Gu, Long
    Yan, Fei
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [48] B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength
    Wang, Xin
    Ren, Pengrong
    Ren, Dong
    Xie, Linfeng
    Li, Tingting
    Xu, Junqi
    Xi, Yingxue
    Yang, Chen
    CERAMICS INTERNATIONAL, 2021, 47 (03) : 3699 - 3705
  • [49] Enhanced energy storage performance under low electric field in Sm3+ doped AgNbO3 ceramics
    Li, Jing
    Jin, Li
    Tian, Ye
    Chen, Chao
    Lan, Yu
    Hu, Qingyuan
    Li, Chao
    Wei, Xiaoyong
    Yan, Haixue
    JOURNAL OF MATERIOMICS, 2022, 8 (02) : 266 - 273
  • [50] Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics
    Lu, Zhilun
    Bao, Weichao
    Wang, Ge
    Sun, Shi-Kuan
    Li, Linhao
    Li, Jinglei
    Yang, Huijing
    Ji, Hongfen
    Feteira, Antonio
    Li, Dejun
    Xu, Fangfang
    Kleppe, Annette K.
    Wang, Dawei
    Liu, Shi-Yu
    Reaney, Ian M.
    NANO ENERGY, 2021, 79