Predicting Wall Thickness Loss in Water Pipes Using Machine Learning Techniques

被引:6
|
作者
Taiwo, Ridwan [1 ]
Ben Seghier, Mohamed El Amine [2 ]
Zayed, Tarek [1 ]
机构
[1] Hong Kong Polytech Univ, Hung Hom, Hong Kong, Peoples R China
[2] OsloMet Oslo Metropolitan Univ, Dept Civil Engn & Energy Technol, N-0167 Oslo, Norway
来源
EUROPEAN ASSOCIATION ON QUALITY CONTROL OF BRIDGES AND STRUCTURES, EUROSTRUCT 2023, VOL 6, ISS 5 | 2023年
关键词
Pipe wall thickness; Water pipe failure; Random Forest; Gradient boosting machine; SHAP; Wall thickness loss; Machine learning models; Prediction;
D O I
10.1002/cepa.2075
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Wall thickness loss in water pipes has been found to be positively correlated with water pipe failure. The reliability of water pipes reduces as their wall thickness loss increases. Although previous studies have investigated pipe failure modeling using historical failure data, however, indirect failure modeling via wall thickness loss is yet to be explored. Hence, this study develops machine learning (ML) models to predict wall thickness loss in water pipes. Random Forest (RF) and Gradient Boosting Machine (GBM) are chosen as the base models and are integrated with Bayesian Optimization (BO) algorithm for hyperparameters selection. The predictive models are evaluated using root mean square error (RMSE), mean absolute error (MEA), mean absolute percentage error (MAPE), and coefficient of determination (R-2). Based on the evaluation metrics, the hybrid models (i.e., RF+ BO and GBM+BO) outperformed the base models (RF and GBM), showing the importance of the systematic selection of hyperparameters. The best model (RF + BO) achieved an RMSE, MAE, MAPE, and R-2 value of 3.212, 2.494, 11.506, and 0.910, respectively. These metrics show the high predictive capability of the model, which can be used by water infrastructure management to predict wall thickness loss in water pipes.
引用
收藏
页码:1087 / 1092
页数:6
相关论文
共 50 条
  • [21] Predicting factors for survival of breast cancer patients using machine learning techniques
    Ganggayah, Mogana Darshini
    Taib, Nur Aishah
    Har, Yip Cheng
    Lio, Pietro
    Dhillon, Sarinder Kaur
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (1)
  • [22] Predicting students’ academic performance using machine learning techniques: a literature review
    Nabil A.
    Seyam M.
    Abou-Elfetouh A.
    International Journal of Business Intelligence and Data Mining, 2022, 20 (04) : 456 - 479
  • [23] Predicting wind pressures around circular cylinders using machine learning techniques
    Hu, Gang
    Kwok, K. C. S.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2020, 198
  • [24] Detection of Loss Zones While Drilling Using Different Machine Learning Techniques
    Alsaihati, Ahmed
    Abughaban, Mahmoud
    Elkatatny, Salaheldin
    Abdulraheem, Abdulazeez
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (04):
  • [25] Predicting Sneaker Resale Prices using Machine Learning
    Raditya, Dita
    Erlin, Nicholas P.
    Amanda, Ferarida S.
    Hanafiah, Novita
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 533 - 540
  • [26] COMPARISON OF MACHINE LEARNING TECHNIQUES FOR PREDICTING NLR PROTEINS
    Nadia
    Gandotra, Ekta
    Kumar, Narendra
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2023, 35 (02):
  • [27] Water quality estimates using machine learning techniques in an experimental watershed
    Costa, David
    Bayissa, Yared
    Barbosa, Kargean Vianna
    Villas-Boas, Mariana Dias
    Bawa, Arun
    Lugon Junior, Jader
    Silva Neto, Antonio J.
    Srinivasan, Raghavan
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2798 - 2814
  • [28] Comparison of machine learning techniques for predicting porosity of chalk
    Nourani, Meysam
    Alali, Najeh
    Samadianfard, Saeed
    Band, Shahab S.
    Chau, Kwok-wing
    Shu, Chi-Min
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [29] ADVANCED MACHINE LEARNING TECHNIQUES FOR PREDICTING NOx LEVELS
    Alharbi, Randa
    Algarni, Abeer D.
    THERMAL SCIENCE, 2024, 28 (6B): : 4979 - 4989
  • [30] Predicting IMDb Rating of Movies by Machine Learning Techniques
    Bristi, Warda Ruheen
    Zaman, Zakia
    Sultana, Nishat
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,