Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair

被引:8
作者
Liu, Yu-Yao [1 ,2 ]
Intini, Claudio [3 ,4 ,5 ,6 ]
Dobricic, Marko [3 ,4 ,5 ,6 ]
O'Brien, Fergal J. [3 ,4 ,5 ,6 ]
Llorca, Javier [1 ,2 ]
Echeverry-Rendon, Monica [1 ]
机构
[1] IMDEA Mat Inst, Madrid 28906, Spain
[2] Univ Politecn Madrid, Polytech Univ Madrid, Dept Mat Sci, Madrid 28040, Spain
[3] Royal Coll Surg Ireland RCSI, Dept Anat & Regenerat Med, Tissue Engn Res Grp, Dublin, Ireland
[4] Trinity Coll Dublin TCD, Trinity Ctr Biomed Engn, Dublin 2, Ireland
[5] RCSI, Adv Mat & Bioengn Res AMBER Ctr, Dublin, Ireland
[6] TCD, Dublin, Ireland
基金
欧洲研究理事会;
关键词
Poly (glycerol sebacate); Collagen; 3D-printing; Chondrogenesis; Cartilage defect repair; ARTICULAR-CARTILAGE; OSTEOCHONDRAL TISSUE; REGENERATION; SOX9; DIFFERENTIATION; DEFORMATION;
D O I
10.1016/j.ijbiomac.2024.135827
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat- derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.
引用
收藏
页数:12
相关论文
共 58 条
[1]  
Ahmadian Elham, 2023, Nanotheranostics, V7, P61, DOI 10.7150/ntno.78611
[2]   In vivo cartilage contact deformation in the healthy human tibiofemoral joint [J].
Bingham, J. T. ;
Papannagari, R. ;
de Velde, S. K. Van ;
Gross, C. ;
Gill, T. J. ;
Felson, D. T. ;
Rubash, H. E. ;
Li, G. .
RHEUMATOLOGY, 2008, 47 (11) :1622-1627
[3]   Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering [J].
Camarero-Espinosa, Sandra ;
Calore, Andrea ;
Wilbers, Arnold ;
Harings, Jules ;
Moroni, Lorenzo .
ACTA BIOMATERIALIA, 2020, 102 :192-204
[4]   Articular cartilage: from formation to tissue engineering [J].
Camarero-Espinosa, Sandra ;
Rothen-Rutishauser, Barbara ;
Foster, E. Johan ;
Weder, Christoph .
BIOMATERIALS SCIENCE, 2016, 4 (05) :734-767
[5]   3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: In vivo study [J].
Cao, Yanyan ;
Cheng, Peng ;
Sang, Shengbo ;
Xiang, Chuan ;
An, Yang ;
Wei, Xiaochun ;
Yan, Yayun ;
Li, Pengcui .
MATERIALS & DESIGN, 2021, 210 (210)
[6]   Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds [J].
Chen, Chih-Hao ;
Kuo, Chang-Yi ;
Chen, Jyh-Ping .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (02)
[7]   Fabrication of 3D Bioprinted Bi-Phasic Scaffold for Bone-Cartilage Interface Regeneration [J].
Chen, Hongyi ;
Gonnella, Giovanni ;
Huang, Jie ;
Di-Silvio, Lucy .
BIOMIMETICS, 2023, 8 (01)
[8]   Hierarchical macro-microporous WPU-ECM scaffolds combined with Microfracture Promote in Situ Articular Cartilage Regeneration in Rabbits [J].
Chen, Mingxue ;
Li, YangYang ;
Liu, Shuyun ;
Feng, Zhaoxuan ;
Wang, Hao ;
Yang, Dejin ;
Guo, Weimin ;
Yuan, Zhiguo ;
Gao, Shuang ;
Zhang, Yu ;
Zha, Kangkang ;
Huang, Bo ;
Wei, Fu ;
Sang, Xinyu ;
Tian, Qinyu ;
Yang, Xuan ;
Sui, Xiang ;
Zhou, Yixin ;
Zheng, Yufeng ;
Guo, Quanyi .
BIOACTIVE MATERIALS, 2021, 6 (07) :1932-1944
[9]   3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects [J].
Critchley, Susan ;
Sheehy, Eamon J. ;
Cunniffe, Grainne ;
Diaz-Payno, Pedro ;
Carroll, Simon F. ;
Jeon, Oju ;
Alsberg, Eben ;
Brama, Pieter A. J. ;
Kelly, Daniel J. .
ACTA BIOMATERIALIA, 2020, 113 :130-143
[10]   3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties [J].
de Melo, Bruna A. G. ;
Jodat, Yasamin A. ;
Mehrotra, Shreya ;
Calabrese, Michelle A. ;
Kamperman, Tom ;
Mandal, Biman B. ;
Santana, Maria H. A. ;
Alsberg, Eben ;
Leijten, Jeroen ;
Shin, Su Ryon .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (51)