Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection

被引:8
|
作者
Scala, Pietro [1 ]
Manno, Giorgio [1 ]
Ciraolo, Giuseppe [1 ]
机构
[1] Univ Palermo, Dept Engn DI, Viale Sci,Bldg 8, I-90128 Palermo, Italy
关键词
Automatic coastline detection; Deep learning; Coast train; Semantic segmentation; Aerial/satellite images; TROPICAL CYCLONES; STORMS;
D O I
10.1016/j.cageo.2024.105704
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new CNN based approach supported by semantic segmentation, was proposed. This approach is frequently used to carry out regional-scale studies. The core of our method revolves around a CNN model, based on the famous U-Net architecture. Its purpose is to identify different classes of pixels on satellite images and later to automatically detect the coastline. The recently launched Coast Train dataset was used to train the CNN model. Traditional coastline detection was improved ("water/land" segmentation) by means of two new aspects the use of the Sobel-edge loss function and the segmentation of the satellite images into several categories like built-up areas, vegetation and land besides beach/sand and water classes. The approach used ensures a more precise coastline extraction, distinguishing water pixels from all other categories. Our model adeptly identifies features, such as cliff vegetation or coastal roads, that some models might overlook. In this way, coastline localization and its drawing for regional scale study, have minor uncertainties. The performance of the CNN-based method, achieving 85% accuracy and 80% IoU (Intersection over Union) in the segmentation process. The ability of the model to extract the coastline was validated on a Sicilian case study, notably the San Leone beach (Agrigento). The model's results align closely with the ground truth, moreover, its reliability was further confirmed when it was tested on other Sicilian coastal regions. Beyond robustness, the model offers a promising avenue for enhanced coastal analysis potentially applicable to coastal planning and management.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Semantic segmentation-based traffic sign detection and recognition using deep learning techniques
    Timbus, Calin
    Miclea, Vlad
    Lemnaru, Camelia
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2018, : 325 - 331
  • [32] Village Detection Based on Deep Semantic Segmentation Network in Google Earth Satellite Images
    Liu, Jiange
    Mu, Dejun
    He, Jian
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [33] Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review
    Jelas, Imran Md
    Zulkifley, Mohd Asyraf
    Abdullah, Mardina
    Spraggon, Martin
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2024, 7
  • [34] Comparison of Deep Learning-Based Semantic Segmentation Models for Unmanned Aerial Vehicle Images
    Tippayamontri, Kan
    Khunlertgit, Navadon
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 415 - 418
  • [35] Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images
    Mejia-Zuluaga, Rafael
    Carlos Aguirre-Arango, Juan
    Collazos-Huertas, Diego
    Daza-Castillo, Jessica
    Valencia-Marulanda, Nestor
    Calderon-Marulanda, Mauricio
    Aguirre-Ospina, Oscar
    Alvarez-Meza, Andres
    Castellanos-Dominguez, German
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 342 - 352
  • [36] Semantic Segmentation of Wheat Stripe Rust Images Using Deep Learning
    Li, Yang
    Qiao, Tianle
    Leng, Wenbo
    Jiao, Wenrui
    Luo, Jing
    Lv, Yang
    Tong, Yiran
    Mei, Xuanjing
    Li, Hongsheng
    Hu, Qiongqiong
    Yao, Qiang
    AGRONOMY-BASEL, 2022, 12 (12):
  • [37] Deep multi-task learning for a geographically-regularized semantic segmentation of aerial images
    Volpi, Michele
    Tuia, Devis
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 48 - 60
  • [38] Runway Detection and Localization in Aerial Images Using Deep Learning
    Akbar, Javeria
    Shahzad, Muhammad
    Malik, Muhammad Imran
    Ul-Hasan, Adnan
    Shafait, Fasial
    2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2019, : 559 - 566
  • [39] Deep Learning for Weed Detection and Segmentation in Agricultural Crops Using Images Captured by an Unmanned Aerial Vehicle
    Silva, Josef Augusto Oberdan Souza
    de Siqueira, Vilson Soares
    Mesquita, Marcio
    Vale, Luis Sergio Rodrigues
    Marques, Thiago do Nascimento Borges
    da Silva, Jhon Lennon Bezerra
    da Silva, Marcos Vinicius
    Lacerda, Lorena Nunes
    de Oliveira-Junior, Jose Francisco
    de Lima, Joao Luis Mendes Pedroso
    de Oliveira, Henrique Fonseca Elias
    REMOTE SENSING, 2024, 16 (23)
  • [40] Unsupervised Semantic Segmentation of Aerial Images With Application to UAV Localization
    Jaimes, Brayan Rene Acevedo
    Ferreira, Joao Pedro Klock
    Castro, Cristiano Leite
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19