Comparison of Optimization Methods for the Attitude Control of Satellites

被引:0
作者
Albareda, Ramon [1 ]
Olfe, Karl Stephan [2 ]
Bello, Alvaro [2 ]
Fernandez, Jose Javier [2 ]
Lapuerta, Victoria [2 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Aeronaut & Espacio, Plaza Cardenal Cisneros 3, Madrid 28040, Spain
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Aeronaut & Espacio, Ctr Computat Simulat, E USOC, Plaza Cardenal Cisneros 3, Madrid 28040, Spain
关键词
optimization; genetic algorithms; particle swarm optimization; fuzzy logic; attitude control; PARTICLE SWARM OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; CONVERGENCE; ALGORITHM; IDENTIFICATION; STABILITY;
D O I
10.3390/electronics13173363
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The definition of multiple operational modes in a satellite is of vital importance for the adaptation of the satellite to the operational demands of the mission and environmental conditions. In this work, three optimization methods were implemented for the initial calibration of an attitude controller based on fuzzy logic with the purpose of performing an initial exploration of optimal regions of the design space: a multi-objective genetic algorithm (GAMULTIOBJ), a particle swarm optimization (PSO), and a multi-objective particle swarm optimization (MOPSO). The performance of the optimizers was compared in terms of energy cost, accuracy, computational cost, and convergence capabilities of each algorithm. The results show that the PSO algorithm demonstrated superior computational efficiency compared to the others. Concerning the exploration of optimum regions, all algorithms exhibited similar exploratory capabilities. PSO's low computational cost allowed for thorough scanning of specific interest regions, making it ideal for detailed exploration, whereas MOPSO and GAMULTIOBJ provided more balanced performance with constrained Pareto front elements.
引用
收藏
页数:17
相关论文
共 42 条
  • [1] Azam M.H., 2023, P 2023 25 INT MULT C, P1
  • [2] Experimental verification and comparison of fuzzy and PID controllers for attitude control of nanosatellites
    Bello, A.
    Olfe, K. S.
    Rodriguez, J.
    Ezquerro, J. M.
    Lapuerta, V.
    [J]. ADVANCES IN SPACE RESEARCH, 2023, 71 (09) : 3613 - 3630
  • [3] Parameterized fuzzy-logic controllers for the attitude control of nanosatellites in low earth orbits. A comparative studio with PID controllers
    Bello, Alvaro
    del Castanedo, Astor
    Olfe, Karl Stephan
    Rodriguez, Jacobo
    Lapuerta, Victoria
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [4] Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review
    Bonyadi, Mohammad Reza
    Michalewicz, Zbigniew
    [J]. EVOLUTIONARY COMPUTATION, 2017, 25 (01) : 1 - 54
  • [5] A Comparison Between Genetic Algorithm and Particle Swarm Optimization for Economic Dispatch in a Microgrid
    Calloquispe-Huallpa, Ricardo
    Huaman-Rivera, Anny
    Ordonez-Benavides, Andres F.
    Garcia-Garcia, Yuly V.
    Andrade-Rengifo, Fabio
    Aponte-Bezares, Erick E.
    Irizarry-Rivera, Agustin
    [J]. 2023 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES LATIN AMERICA, ISGT-LA, 2023, : 415 - 419
  • [6] Fuzzy attitude control for a nanosatellite in low Earth orbit
    Calvo, Daniel
    Aviles, Taisir
    Lapuerta, Victoria
    Laveron-Siniavilla, Ana
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 58 : 102 - 118
  • [7] A quarter century of particle swarm optimization
    Cheng, Shi
    Lu, Hui
    Lei, Xiujuan
    Shi, Yuhui
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (03) : 227 - 239
  • [8] The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    Clerc, M
    Kennedy, J
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 58 - 73
  • [9] Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
  • [10] Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279