Oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over CuO and NiO modified natural sourced hierarchical ZSM-5

被引:1
|
作者
Herlina, Idra [1 ,2 ]
Krisnandi, Yuni Krisyuningsih [1 ,2 ]
Ridwan, Muhammad [1 ]
机构
[1] Univ Indonesia, Fac Math & Nat Sci, Dept Chem, Depok 16424, Indonesia
[2] Univ Indonesia, Fac Math & Nat Sci FMIPA, Dept Chem, Solid Inorgan Framework Lab, Depok 16424, Indonesia
关键词
Hierarchical zsm-5; CuO/zsm-5; NiO/ZSM-5; 5-hydroxymethylfurfural; 2; 5-furandicarboxylic acid; AEROBIC OXIDATION; PHYSICOCHEMICAL PROPERTIES; CATALYST; ZEOLITE; BIOMASS; CONVERSION; CHEMICALS; FDCA;
D O I
10.1016/j.sajce.2023.10.011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The platform molecule 2,5-furandicarboxylic acid (FDCA) has potential applications. FDCA can be synthesized through the oxidation of 5-hydroxymethylfurfural (HMF). In this study, HMF oxidation to FDCA was conducted over ZSM-5-based catalysts from natural sources. ZSM-5 was impregnated with CuO and NiO oxide metals to increase their acidity and oxidizing ability. Characterization of the catalyst utilizing x-ray diffraction (XRD), infrared spectrophotometer (FT-IR), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), Brunauer-Emmet-Teller (BET) surface area analysis, and temperature-programmed desorption of ammonia (NH3- 3- TPD) led to the discovery of its physicochemical characteristics. The results showed that synthesized ZSM-5 had hierarchical pores with a surface area of 123.58 m2/g. 2 /g. Impregnation with CuO and NiO increased the acidity by 22.5 and 3.04 % for CuO/ZSM-5 and NiO/ZSM-5, respectively. In a small glass batch reactor, HMF was converted to FDCA, and the products were analyzed using High-Performance Liquid Chromatography (HPLC) to determine the yield of FDCA and the intermediate compounds, such as 5-hydroxymethylfuroic acid (HMFCA), 5-formylfuroic acid (FFCA), and 2,5-diformylfuran (DFF). HPLC results showed no DFF signal, indicating the formation of FDCA from HMF through HMFCA and FFCA. The highest conversion (99.2 %) was obtained using a NiO/ZSM5 catalyst at a temperature of 130 degrees C for 4 h, with FDCA yield of 88.9 %.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [41] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)
  • [42] Efficient oxidation of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid catalyzed by Merrifield resin supported cobalt porphyrin
    Gao, Langchang
    Deng, Kejian
    Zheng, Judun
    Liu, Bing
    Zhang, Zehui
    CHEMICAL ENGINEERING JOURNAL, 2015, 270 : 444 - 449
  • [43] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China(Chemistry), 2017, (07) : 950 - 957
  • [44] Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts
    Lufan Zheng
    Junqi Zhao
    Zexue Du
    Baoning Zong
    Haichao Liu
    Science China Chemistry, 2017, 60 : 950 - 957
  • [45] Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Kong, Fanhao
    Zhang, Zhe
    Yang, Lan
    Wang, Min
    DALTON TRANSACTIONS, 2021, 50 (31) : 10922 - 10927
  • [46] Synergistic chemo/biocatalytic synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural
    Yang, Zi-Yue
    Wen, Mao
    Zong, Min-Hua
    Li, Ning
    CATALYSIS COMMUNICATIONS, 2020, 139
  • [47] Calcium carbonate promoted 2,5-furandicarboxylic acid production from 5-hydroxymethylfurfural over Co-OMS-2 catalyst
    Liu, Xuyang
    Liu, Deguang
    Li, Jiang
    Wang, Jiawang
    Fu, Yao
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 225
  • [48] Selective Conversion of Biomass-Derived Precursor 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Ferrate (VI) Oxidation
    Zhang, Junhua
    Li, Junke
    Tang, Yanjun
    Lin, Lu
    Long, Minnan
    Yang, Fei
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2015, 9 (05) : 502 - 508
  • [49] A Highly Efficient Nickel Phosphate Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Xu, Xuli
    Song, Xiaojie
    Liu, Xiaohui
    Wang, Haifeng
    Hu, Yongfeng
    Xia, Jie
    Chen, Jiacheng
    Shakouri, Mohsen
    Guo, Yong
    Wang, Yanqin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (17) : 5538 - 5547
  • [50] CoOx-MC (MC = Mesoporous Carbon) for Highly Efficient Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Furandicarboxylic Acid (FDCA)
    Liu, Xinyu
    Zhang, Min
    Li, Zhaohui
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (12) : 4801 - 4808