Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images

被引:0
作者
Mendoza-Chavarria, Juan N. [1 ]
Cruz-Guerrero, Ines A. [1 ,2 ,3 ]
Gutierrez-Navarro, Omar [4 ]
Leon, Raquel [5 ]
Ortega, Samuel [5 ,6 ]
Fabelo, Himar [5 ,7 ]
Callico, Gustavo M. [5 ]
Campos-Delgado, Daniel Ulises [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi 78290, Mexico
[2] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Autonoma Aguascalientes, Dept Ingn Biomed, Aguascalientes, Mexico
[5] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, Las Palmas Gran Canaria 35017, Spain
[6] Norwegian Inst Food Fisheries & Aquaculture Res NO, N-9019 Tromso, Norway
[7] Fdn Canaria Inst Invest Sanitaria Canarias FIISC, Las Palmas Gran Canaria 35012, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Non-linear unmixing; Hyperspectral imaging; Multispectral imaging; Multi-linear model; Total variation; TOTAL VARIATION REGULARIZATION; COMPONENT ANALYSIS; CLASSIFICATION; ALGORITHM; MODEL;
D O I
10.1016/j.jfranklin.2024.107282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi and hyperspectral images have become invaluable sources of information, revolutionizing various fields such as remote sensing, environmental monitoring, agriculture and medicine. In this expansive domain, the multi-linear mixing model (MMM) is a versatile tool to analyze spatial and spectral domains by effectively bridging the gap between linear and non-linear interactions of light and matter. This paper introduces an upgraded methodology that integrates the versatility of MMM in non-linear spectral unmixing, while leveraging spatial coherence (SC) enhancement through total variation theory to mitigate noise effects in the abundance maps. Referred to as non-linear extended blind end-member and abundance extraction with SC (NEBEAE-SC), the proposed methodology relies on constrained quadratic optimization, cyclic coordinate descent algorithm, and the split Bregman formulation. The validation of NEBEAE-SC involved rigorous testing on various hyperspectral datasets, including a synthetic image, remote sensing scenarios, and two biomedical applications. Specifically, our biomedical applications are focused on classification tasks, the first addressing hyperspectral images of in-vivo brain tissue, and the second involving multispectral images of ex-vivo human placenta. Our results demonstrate an improvement in the abundance estimation by NEBEAE-SC compared to similar algorithms in the state-of-the-art by offering a robust tool for non-linear spectral unmixing in diverse application domains.
引用
收藏
页数:21
相关论文
共 50 条
[41]   Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform [J].
Xu, Chenguang ;
Wu, Zhaoming ;
Li, Fan ;
Zhang, Shaoquan ;
Deng, Chengzhi ;
Wang, Yuanyun .
INFRARED PHYSICS & TECHNOLOGY, 2021, 112
[42]   Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery [J].
Yang, Jian ;
He, Yuhong .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 54 :53-64
[43]   Multi and hyperspectral image unmixing with spatial coherence by extended blind end-member and abundance extraction [J].
Cruz-Guerrero, Ines A. ;
Mejia-Rodriguez, Aldo R. ;
Ortega, Samuel ;
Fabelo, Himar ;
Callico, Gustavo M. ;
Jo, Javier A. ;
Campos-Delgado, Daniel U. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (15) :11165-11196
[44]   Local Spectral Similarity-Guided Sparse Unmixing of Hyperspectral Images With Spatial Graph Regularization [J].
Liang, Bingkun ;
Li, Fan ;
Zhang, Shaoquan ;
Plaza, Antonio ;
Deng, Chengzhi ;
Lai, Pengfei ;
Zheng, Jiajun ;
Wang, Shengqian ;
Su, Dingli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 :1-15
[45]   Saliency Detection by Non-linear Intensity mapping In Images [J].
Lang, Congyan ;
Feng, Songhe ;
Xu, De .
2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, :1025-1028
[46]   Inference of Dense Spectral Reflectance Images from Sparse Reflectance Measurement using Non-linear Regression Modeling [J].
Deglint, Jason ;
Kazemzadeh, Farnoud ;
Wong, Alexander ;
Clausi, David A. .
APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVIII, 2015, 9599
[47]   Linear Spectral Unmixing Using Least Squares Error, Orthogonal Projection and Simplex Volume for Hyperspectral Images [J].
Li, Hsiao-Chi ;
Chang, Chein-I .
2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
[48]   Segmenting Diabetic Retinopathy Lesions in Multispectral Images Using Low-Dimensional Spatial-Spectral Matrix Representation [J].
He, Yunlong ;
Jiao, Wanzhen ;
Shi, Yunfeng ;
Lian, Jian ;
Zhao, Bojun ;
Zou, Wei ;
Zhu, Yuemin ;
Zheng, Yuanjie .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (02) :493-502
[49]   Non-linear optimal multivariate spatial design using spatial vine copulas [J].
Musafer, G. Nishani ;
Thompson, M. Helen .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (02) :551-570
[50]   Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network [J].
Saralioglu, Ekrem ;
Gungor, Oguz .
GEOCARTO INTERNATIONAL, 2022, 37 (02) :657-677