Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images

被引:0
作者
Mendoza-Chavarria, Juan N. [1 ]
Cruz-Guerrero, Ines A. [1 ,2 ,3 ]
Gutierrez-Navarro, Omar [4 ]
Leon, Raquel [5 ]
Ortega, Samuel [5 ,6 ]
Fabelo, Himar [5 ,7 ]
Callico, Gustavo M. [5 ]
Campos-Delgado, Daniel Ulises [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi 78290, Mexico
[2] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Autonoma Aguascalientes, Dept Ingn Biomed, Aguascalientes, Mexico
[5] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, Las Palmas Gran Canaria 35017, Spain
[6] Norwegian Inst Food Fisheries & Aquaculture Res NO, N-9019 Tromso, Norway
[7] Fdn Canaria Inst Invest Sanitaria Canarias FIISC, Las Palmas Gran Canaria 35012, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Non-linear unmixing; Hyperspectral imaging; Multispectral imaging; Multi-linear model; Total variation; TOTAL VARIATION REGULARIZATION; COMPONENT ANALYSIS; CLASSIFICATION; ALGORITHM; MODEL;
D O I
10.1016/j.jfranklin.2024.107282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi and hyperspectral images have become invaluable sources of information, revolutionizing various fields such as remote sensing, environmental monitoring, agriculture and medicine. In this expansive domain, the multi-linear mixing model (MMM) is a versatile tool to analyze spatial and spectral domains by effectively bridging the gap between linear and non-linear interactions of light and matter. This paper introduces an upgraded methodology that integrates the versatility of MMM in non-linear spectral unmixing, while leveraging spatial coherence (SC) enhancement through total variation theory to mitigate noise effects in the abundance maps. Referred to as non-linear extended blind end-member and abundance extraction with SC (NEBEAE-SC), the proposed methodology relies on constrained quadratic optimization, cyclic coordinate descent algorithm, and the split Bregman formulation. The validation of NEBEAE-SC involved rigorous testing on various hyperspectral datasets, including a synthetic image, remote sensing scenarios, and two biomedical applications. Specifically, our biomedical applications are focused on classification tasks, the first addressing hyperspectral images of in-vivo brain tissue, and the second involving multispectral images of ex-vivo human placenta. Our results demonstrate an improvement in the abundance estimation by NEBEAE-SC compared to similar algorithms in the state-of-the-art by offering a robust tool for non-linear spectral unmixing in diverse application domains.
引用
收藏
页数:21
相关论文
共 50 条
[31]   SSLT-Net: A Spatial-Spectral Linear Transformer Unmixing Network for Hyperspectral Image [J].
Deng, Jiangwei ;
Zhang, Guanglian ;
Zhang, Zhanxu ;
Bian, Lifeng ;
Yang, Chen .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
[32]   A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences [J].
Ye, Yuanxin ;
Shan, Jie .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 90 :83-95
[33]   Parallel Implementation of Linear and Nonlinear Spectral Unmixing of Remotely Sensed Hyperspectral Images [J].
Plaza, Antonio ;
Plaza, Javier .
HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING, 2011, 8183
[34]   IMAGE FUSION AND SPECTRAL UNMIXING OF HYPERSPECTRAL IMAGES FOR SPATIAL IMPROVEMENT OF CLASSIFICATION MAPS [J].
Licciardi, G. A. ;
Villa, A. ;
Khan, M. M. ;
Chanussot, J. .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :7290-7293
[35]   Joint Spatial-spectral Resolution Enhancement of Multispectral Images with Spectral Matrix Factorization and Spatial Sparsity Constraints [J].
Yi, Chen ;
Zhao, Yong-qiang ;
Chan, Jonathan Cheung-Wai ;
Kong, Seong G. .
REMOTE SENSING, 2020, 12 (06)
[36]   A Novel Blind Spectral Unmixing Method Based on Error Analysis of Linear Mixture Model [J].
Li, Chunzhi ;
Fang, Faming ;
Zhou, Aimin ;
Zhang, Guixu .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (07) :1180-1184
[37]   Effect of linear and non-linear mixing on hyper-spectral signatures of snow in the optical region (350-2500 nm) [J].
Shekhar, Chander ;
Srivastava, Sunita ;
Negi, H. S. ;
Gore, Akshay ;
Snehmani .
GEOCARTO INTERNATIONAL, 2019, 34 (06) :644-663
[38]   Impulse denoising for hyper-spectral images: A blind compressed sensing approach [J].
Majumdar, Angshul ;
Ansari, Naushad ;
Aggarwal, Hemant ;
Biyani, Pravesh .
SIGNAL PROCESSING, 2016, 119 :136-141
[39]   Spatial Resolution Enhancement of Hyperspectral Images Using Spectral Unmixing and Bayesian Sparse Representation [J].
Ghasrodashti, Elham Kordi ;
Karami, Azam ;
Heylen, Rob ;
Scheunders, Paul .
REMOTE SENSING, 2017, 9 (06)
[40]   SSCU-Net: Spatial-Spectral Collaborative Unmixing Network for Hyperspectral Images [J].
Qi, Lin ;
Gao, Feng ;
Dong, Junyu ;
Gao, Xinbo ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60