Blind non-linear spectral unmixing with spatial coherence for hyper and multispectral images

被引:0
作者
Mendoza-Chavarria, Juan N. [1 ]
Cruz-Guerrero, Ines A. [1 ,2 ,3 ]
Gutierrez-Navarro, Omar [4 ]
Leon, Raquel [5 ]
Ortega, Samuel [5 ,6 ]
Fabelo, Himar [5 ,7 ]
Callico, Gustavo M. [5 ]
Campos-Delgado, Daniel Ulises [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, San Luis Potosi 78290, Mexico
[2] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Univ Colorado, Childrens Hosp Colorado, Dept Pediat Plast & Reconstruct Surg, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Autonoma Aguascalientes, Dept Ingn Biomed, Aguascalientes, Mexico
[5] Univ Las Palmas Gran Canaria, Inst Appl Microelect IUMA, Las Palmas Gran Canaria 35017, Spain
[6] Norwegian Inst Food Fisheries & Aquaculture Res NO, N-9019 Tromso, Norway
[7] Fdn Canaria Inst Invest Sanitaria Canarias FIISC, Las Palmas Gran Canaria 35012, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2024年 / 361卷 / 18期
关键词
Non-linear unmixing; Hyperspectral imaging; Multispectral imaging; Multi-linear model; Total variation; TOTAL VARIATION REGULARIZATION; COMPONENT ANALYSIS; CLASSIFICATION; ALGORITHM; MODEL;
D O I
10.1016/j.jfranklin.2024.107282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi and hyperspectral images have become invaluable sources of information, revolutionizing various fields such as remote sensing, environmental monitoring, agriculture and medicine. In this expansive domain, the multi-linear mixing model (MMM) is a versatile tool to analyze spatial and spectral domains by effectively bridging the gap between linear and non-linear interactions of light and matter. This paper introduces an upgraded methodology that integrates the versatility of MMM in non-linear spectral unmixing, while leveraging spatial coherence (SC) enhancement through total variation theory to mitigate noise effects in the abundance maps. Referred to as non-linear extended blind end-member and abundance extraction with SC (NEBEAE-SC), the proposed methodology relies on constrained quadratic optimization, cyclic coordinate descent algorithm, and the split Bregman formulation. The validation of NEBEAE-SC involved rigorous testing on various hyperspectral datasets, including a synthetic image, remote sensing scenarios, and two biomedical applications. Specifically, our biomedical applications are focused on classification tasks, the first addressing hyperspectral images of in-vivo brain tissue, and the second involving multispectral images of ex-vivo human placenta. Our results demonstrate an improvement in the abundance estimation by NEBEAE-SC compared to similar algorithms in the state-of-the-art by offering a robust tool for non-linear spectral unmixing in diverse application domains.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Spectral-Spatial-Weighted Multiview Collaborative Sparse Unmixing for Hyperspectral Images [J].
Qi, Lin ;
Li, Jie ;
Wang, Ying ;
Huang, Yongfa ;
Gao, Xinbo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12) :8766-8779
[22]   Sparse Linear Spectral Unmixing of Hyperspectral Images Using Expectation-Propagation [J].
Li, Zeng ;
Altmann, Yoann ;
Chen, Jie ;
Mclaughlin, Stephen ;
Rahardja, Susanto .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[23]   SPATIAL INTERPOLATION AS A TOOL FOR SPECTRAL UNMIXING OF REMOTELY SENSED IMAGES [J].
Li Xi ;
Chen Xiaoling .
XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7) :209-212
[24]   BLIND HYPERSPECTRAL UNMIXING USING AN EXTENDED LINEAR MIXING MODEL TO ADDRESS SPECTRAL VARIABILITY [J].
Drumetz, L. ;
Henrot, S. ;
Veganzone, M. A. ;
Chanussot, J. ;
Jutten, C. .
2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
[25]   Satellite-derived bathymetry integrating spatial and spectral information of multispectral images [J].
LI, Ningning ;
Tang, Qiuhua ;
Chen, Yilan ;
Dong, Zhipeng ;
LI, J. I. E. ;
Fu, Xuancheng .
APPLIED OPTICS, 2023, 62 (08) :2017-2029
[26]   Comparison of linear and nonlinear spectral unmixing approaches: a case study with multispectral TM imagery [J].
Yu, Jie ;
Chen, Dongmei ;
Lin, Yi ;
Ye, Su .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (03) :773-795
[27]   Supervised feature selection for linear and non-linear regression of L*a*b* color from multispectral images of meat [J].
Sharifzadeh, Sara ;
Clemmensen, Line H. ;
Borggaard, Claus ;
Stoier, Susanne ;
Ersboll, Bjame K. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 27 :211-227
[28]   The effects of misregistration between hyperspectral and panchromatic images on linear spectral unmixing [J].
Cheng, Xiaoyu ;
Wang, Yueming ;
Jia, Jianxin ;
Wen, Maoxing ;
Shu, Rong ;
Wang, Jianyu .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (22) :8859-8886
[29]   Spectral Super-Resolution of Multispectral Images Using Spatial-Spectral Residual Attention Network [J].
Zheng, Xiangtao ;
Chen, Wenjing ;
Lu, Xiaoqiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[30]   Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance [J].
Bautista, Pinky A. ;
Yagi, Yukako .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (05)