Advance and prospect in the study of laser interferometry technology for space gravitational wave detection

被引:8
作者
Wang, Juan [1 ]
Qi, KeQi [1 ]
Wang, ShaoXin [1 ]
Gao, RuiHong [1 ]
Li, Pan [1 ]
Yang, Ran [1 ]
Liu, HeShan [1 ]
Luo, ZiRen [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Micrograv Lab, Inst Mech, Beijing 100190, Peoples R China
[2] Chinese Acad Sci UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
关键词
space gravitational wave detection; laser interferometry technology; interferometer noise analysis; NOISE SOURCES; LISA; TELESCOPE; LOCKING;
D O I
10.1360/SSPMA-2024-0111
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With the successful detection of ground gravitational waves, space gravitational wave detection, targeting lower frequency bands and wider target wave sources and reflecting more astrophysical phenomena, has been receiving increasing attention from many research teams in various countries. To clarify the development level and limiting factors of the current gravitational wave detection program and prepare for the improvement of the interferometer measurement level in the next step, this article focuses on laser interferometry technology. On the one hand, it reviews the principle of space gravitational wave detection and the in-orbit detection results of typical detection projects at home and abroad. On the other hand, the overall layout of the interferometric measurement system is demonstrated, and the impact mechanisms and suppression methods for main noise sources are introduced.
引用
收藏
页数:19
相关论文
共 102 条
[11]   Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results [J].
Armano, M. ;
Audley, H. ;
Auger, G. ;
Baird, J. T. ;
Bassan, M. ;
Binetruy, P. ;
Born, M. ;
Bortoluzzi, D. ;
Brandt, N. ;
Caleno, M. ;
Carbone, L. ;
Cavalleri, A. ;
Cesarini, A. ;
Ciani, G. ;
Congedo, G. ;
Cruise, A. M. ;
Danzmann, K. ;
de Deus Silva, M. ;
De Rosa, R. ;
Diaz-Aguilo, M. ;
Di Fiore, L. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Dunbar, N. ;
Ferraioli, L. ;
Ferroni, V. ;
Fichter, W. ;
Fitzsimons, E. D. ;
Flatscher, R. ;
Freschi, M. ;
Marin, A. F. Garcia ;
Marirrodriga, C. Garcia ;
Gerndt, R. ;
Gesa, L. ;
Gibert, F. ;
Giardini, D. ;
Giusteri, R. ;
Guzman, F. ;
Grado, A. ;
Grimani, C. ;
Grynagier, A. ;
Grzymisch, J. ;
Harrison, I. ;
Heinzel, G. ;
Hewitson, M. ;
Hollington, D. ;
Hoyland, D. ;
Hueller, M. ;
Inchauspe, H. .
PHYSICAL REVIEW LETTERS, 2016, 116 (23)
[12]  
Armano M, 2015, P 10 INT LISA S
[13]  
Audley H E, 2014, Dissertation for Doctoral Degree
[14]  
BARKE S, 2014, LISA metrology system-final report
[15]  
Barke S., 2015, Dissertation for Doctoral Degree
[16]  
Bischof L, 2023, Dissertation for Doctoral Degree
[17]   Vertical and horizontal seismic isolation performance of the Advanced Virgo External Injection Bench Seismic Attenuation System [J].
Blom, M. R. ;
Beker, M. G. ;
Bertolini, A. ;
van den Brand, J. F. J. ;
Bulten, H. J. ;
Doets, M. ;
Hennes, E. ;
Mul, F. A. ;
Rabeling, D. S. ;
Schimmel, A. .
13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 :641-647
[18]   The LISA Optical Bench: An Overview and Engineering Challenges [J].
Brzozowski, William ;
Robertson, David ;
Fitzsimons, Ewan ;
Ward, Henry ;
Keogh, Jennifer ;
Taylor, Alasdair ;
Milanova, Maria ;
Perreur-Lloyd, Michael ;
Ali, Zeshan ;
Earle, Andrew ;
Clarkson, Daniel ;
Sharman, Robyn ;
Wells, Martyn ;
Parr-Burman, Phil .
SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
[19]   A BALANCED OPTICAL HETERODYNE DETECTOR [J].
CARLETON, HR ;
MALONEY, WT .
APPLIED OPTICS, 1968, 7 (06) :1241-&
[20]   Nanocomposites Facilitate the Removal of Aβ Fibrils for Neuroprotection [J].
Chai Jingshan ;
Li Qiushi ;
Zhao Yu ;
Liu Yang .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2022, 38 (02) :522-528