DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery

被引:4
作者
Shen, Chao [1 ,2 ]
Song, Jianfei [1 ]
Hsieh, Chang-Yu [1 ,2 ]
Cao, Dongsheng [3 ]
Kang, Yu [2 ]
Ye, Wenling [1 ]
Wu, Zhenxing [2 ]
Wang, Jike [2 ]
Zhang, Odin [2 ]
Zhang, Xujun [2 ]
Zeng, Hao [1 ]
Cai, Heng [1 ]
Chen, Yu [1 ]
Chen, Linkang [1 ]
Luo, Hao [1 ]
Zhao, Xinda [1 ]
Jian, Tianye [1 ]
Chen, Tong [1 ]
Jiang, Dejun [2 ]
Wang, Mingyang [2 ]
Ye, Qing [2 ]
Wu, Jialu [2 ]
Du, Hongyan [2 ]
Shi, Hui [1 ]
Deng, Yafeng [1 ,4 ]
Hou, Tingjun [1 ,2 ]
机构
[1] Hangzhou Carbonsilicon AI Technol Co Ltd, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
[3] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410004, Hunan, Peoples R China
[4] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
DOCKING; ACCURATE; OPTIMIZATION; PREDICTION; EFFICIENT; GLIDE;
D O I
10.1021/acs.jcim.4c00621
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Artificial intelligence (AI)-aided drug design has demonstrated unprecedented effects on modern drug discovery, but there is still an urgent need for user-friendly interfaces that bridge the gap between these sophisticated tools and scientists, particularly those who are less computer savvy. Herein, we present DrugFlow, an AI-driven one-stop platform that offers a clean, convenient, and cloud-based interface to streamline early drug discovery workflows. By seamlessly integrating a range of innovative AI algorithms, covering molecular docking, quantitative structure-activity relationship modeling, molecular generation, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction, and virtual screening, DrugFlow can offer effective AI solutions for almost all crucial stages in early drug discovery, including hit identification and hit/lead optimization. We hope that the platform can provide sufficiently valuable guidance to aid real-word drug design and discovery. The platform is available at https://drugflow.com.
引用
收藏
页码:5381 / 5391
页数:11
相关论文
共 51 条
  • [1] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting
    Buterez, David
    Janet, Jon Paul
    Kiddle, Steven J.
    Oglic, Dino
    Lio, Pietro
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] CarsiDock: a deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training
    Cai, Heng
    Shen, Chao
    Jian, Tianye
    Zhang, Xujun
    Chen, Tong
    Han, Xiaoqi
    Yang, Zhuo
    Dang, Wei
    Hsieh, Chang-Yu
    Kang, Yu
    Pan, Peichen
    Ji, Xiangyang
    Song, Jianfei
    Hou, Tingjun
    Deng, Yafeng
    [J]. CHEMICAL SCIENCE, 2024, 15 (04) : 1449 - 1471
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Discovery of MK-1439, an orally bioavailable non-nucleoside reverse transcriptase inhibitor potent against a wide range of resistant mutant HIV viruses
    Cote, Bernard
    Burch, Jason D.
    Asante-Appiah, Ernest
    Bayly, Chris
    Bedard, Leanne
    Blouin, Marc
    Campeau, Louis-Charles
    Cauchon, Elizabeth
    Chan, Manuel
    Chefson, Amandine
    Coulombe, Nathalie
    Cromlish, Wanda
    Debnath, Smita
    Deschenes, Denis
    Dupont-Gaudet, Kristina
    Falgueyret, Jean-Pierre
    Forget, Robert
    Gagne, Sebastien
    Gauvreau, Danny
    Girardin, Melina
    Guiral, Sebastien
    Langlois, Eric
    Li, Chun Sing
    Natalie Nguyen
    Papp, Rob
    Plamondon, Serge
    Roy, Amelie
    Roy, Stephanie
    Seliniotakis, Ria
    St-Onge, Miguel
    Ouellet, Sephane
    Tawa, Paul
    Truchon, Jean-Francois
    Vacca, Joe
    Wrona, Marc
    Yan, Youwei
    Ducharme, Yves
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2014, 24 (03) : 917 - 922
  • [7] Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units
    Ding, Ji
    Tang, Shidi
    Mei, Zheming
    Wang, Lingyue
    Huang, Qinqin
    Hu, Haifeng
    Ling, Ming
    Wu, Jiansheng
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (07) : 1982 - 1998
  • [8] Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
    Friesner, RA
    Banks, JL
    Murphy, RB
    Halgren, TA
    Klicic, JJ
    Mainz, DT
    Repasky, MP
    Knoll, EH
    Shelley, M
    Perry, JK
    Shaw, DE
    Francis, P
    Shenkin, PS
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (07) : 1739 - 1749
  • [9] Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
    Friesner, Richard A.
    Murphy, Robert B.
    Repasky, Matthew P.
    Frye, Leah L.
    Greenwood, Jeremy R.
    Halgren, Thomas A.
    Sanschagrin, Paul C.
    Mainz, Daniel T.
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (21) : 6177 - 6196
  • [10] BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology
    Gilson, Michael K.
    Liu, Tiqing
    Baitaluk, Michael
    Nicola, George
    Hwang, Linda
    Chong, Jenny
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) : D1045 - D1053