VDCrackGAN: A Generative Adversarial Network with Transformer for Pavement Crack Data Augmentation

被引:3
作者
Yu, Gui [1 ,2 ,3 ,4 ]
Zhou, Xinglin [2 ,3 ,4 ]
Chen, Xiaolan [1 ]
机构
[1] Huanggang Normal Univ, Sch Mechatron & Intelligent Mfg, Huanggang 438000, Peoples R China
[2] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
[4] Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430081, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
基金
中国国家自然科学基金;
关键词
data augmentation; generative adversarial network; Swin transformer; crack detection;
D O I
10.3390/app14177907
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Addressing the challenge of limited samples arising from the difficulty and high cost of pavement crack, image collecting and labeling, along with the inadequate ability of traditional data augmentation methods to enhance sample feature space, we propose VDCrackGAN, a generative adversarial network combining VAE and DCGAN, specifically tailored for pavement crack data augmentation. Furthermore, spectral normalization is incorporated to enhance the stability of network training, and the self-attention mechanism Swin Transformer is integrated into the network to further improve the quality of crack generation. Experimental outcomes reveal that in comparison to the baseline DCGAN, VDCrackGAN achieves notable improvements of 13.6% and 26.4% in the Inception Score (IS) and Fr & eacute;chet Inception Distance (FID) metrics, respectively.
引用
收藏
页数:14
相关论文
共 32 条
[1]  
Arjovsky M, 2017, Arxiv, DOI [arXiv:1701.07875, DOI 10.48550/ARXIV.1701.07875]
[2]   Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks [J].
Cha, Young-Jin ;
Choi, Wooram ;
Buyukozturk, Oral .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2017, 32 (05) :361-378
[3]   Crack Detection Based on Generative Adversarial Networks and Deep Learning [J].
Chen, Gongfa ;
Teng, Shuai ;
Lin, Mansheng ;
Yang, Xiaomei ;
Sun, Xiaoli .
KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (04) :1803-1816
[4]  
Chen Jiayi, 2022, 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), P765, DOI 10.1109/PRAI55851.2022.9904067
[5]  
DeVries T, 2017, Arxiv, DOI arXiv:1708.04552
[6]   Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment [J].
Diaz-Pinto, Andres ;
Colomer, Adrian ;
Naranjo, Valery ;
Morales, Sandra ;
Xu, Yanwu ;
Frangi, Alejandro F. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) :2211-2218
[7]  
Doersch C, 2021, Arxiv, DOI [arXiv:1606.05908, 10.48550/arXiv.1606.05908]
[8]   Galaxy detection and identification using deep learning and data augmentation [J].
Gonzalez, R. E. ;
Munoz, R. P. ;
Hernandez, C. A. .
ASTRONOMY AND COMPUTING, 2018, 25 :103-109
[9]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778