Adaptability analysis of flow and heat transfer multi-scale numerical method for printed circuit heat exchanger

被引:0
|
作者
Chen, Wangnan [1 ]
Ma, Qiyuan [1 ]
Liu, Xinyi [1 ]
Cheng, Yang [1 ]
Wang, Qiuwang [1 ]
Ma, Ting [1 ]
机构
[1] Xian Jiaotong Tong Univ, Key Lab Thermofluid Sci & Engn, MOE, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Printed circuit heat exchanger; Multi-scale method; Non-equilibrium porous media model; Flow maldistribution; Heat transfer; Nomenclature; d h Hydraulic diameter (m); f Darcy friction factor; THERMAL-HYDRAULIC PERFORMANCE; HEADER; SIDE;
D O I
10.1016/j.energy.2024.133349
中图分类号
O414.1 [热力学];
学科分类号
摘要
The printed circuit heat exchanger (PCHE) is a high-efficiency and compact mini-channel heat exchanger. Due to the large number of fine channels, it is difficult to conduct the flow and heat transfer numerical simulation of the entire heat exchanger based on the actual channels, which requires a lot of computational resource and time. In this paper, a simplified multi-scale numerical method with a non-equilibrium porous media model (NOPM) is proposed to study the flow and heat transfer performance of PCHE at high temperature and pressure. The pressure field, velocity field and temperature field of NOPM and actual multi-channel model (MC) under different working conditions are compared to study the adaptability of NOPM for the PCHE. The results indicate that the NOPM can accurately predict the flow and heat transfer performance under PCHE configurations with a large number of channels. However, as the channel number decreases, the relative errors in the temperature and pressure prediction significantly increase due to the increased flow maldistribution. Similarly, the NOPM can well predict the overall temperature distribution of the PCHE solid when the channel number is numerous. This work could support accurate thermal design, and provide accurate temperature field for the thermal stress analysis of PCHE.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger
    Xie Y.
    Li J.
    Hu H.
    Huagong Xuebao/CIESC Journal, 2021, 72 : 203 - 209
  • [12] Numerical Study on Flow and Heat Transfer Performance of Natural Gas in a Printed Circuit Heat Exchanger During Transcritical Liquefaction
    Ma, Ting
    Zhang, Pan
    Lian, Jie
    Ke, Hanbing
    Wang, Wei
    Lin, Yuansheng
    Wang, Qiuwang
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [13] Numerical study on heat transfer performance of printed circuit heat exchanger with anisotropic thermal conductivity
    Li, Libo
    Bi, Jiyuan
    Ma, Jingkai
    Zhang, Xiaoxu
    Wang, Qiuwang
    Ma, Ting
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 109
  • [14] NUMERICAL ANALYSIS OF HEAT TRANSFER AND FLOW IN A PASSIVE CONDENSATION HEAT EXCHANGER
    Jo, Jong Chull
    Do, Kyu Sik
    Lee, Yong Kab
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2013, VOL 4: FLUID-STRUCTURE INTERACTION, 2014,
  • [15] Experimental and numerical study of a printed circuit heat exchanger
    Chen, Minghui
    Sun, Xiaodong
    Christensen, Richard N.
    Shi, Shanbin
    Skavdahl, Isaac
    Utgikar, Vivek
    Sabharwall, Piyush
    ANNALS OF NUCLEAR ENERGY, 2016, 97 : 221 - 231
  • [16] Review of optimization and heat transfer correlations of printed circuit heat exchanger
    Yang G.
    Shao W.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (S1): : 13 - 26
  • [17] Effect of tangled channels on the heat transfer in a printed circuit heat exchanger
    Sung, Joonyoung
    Lee, Jae Young
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 647 - 656
  • [18] Theoretical and numerical analysis of conjugate heat transfer for supercritical CO2 flowing in printed circuit heat exchanger
    Wang, Xin
    Xu, Wanting
    Xu, Bo
    Xiong, Cheng
    Guo, Shuai
    Chen, Zhenqian
    JOURNAL OF SUPERCRITICAL FLUIDS, 2022, 189
  • [19] Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger
    Zhao, Zhongchao
    Zhao, Kai
    Jia, Dandan
    Jiang, Pengpeng
    Shen, Rendong
    ENERGIES, 2017, 10 (11):
  • [20] Numerical investigation on flow condensation in zigzag channel of printed circuit heat exchanger
    Hu, Haitao
    Li, Yuhan
    Lei, Rui
    Xie, Yao
    Li, Jianrui
    APPLIED THERMAL ENGINEERING, 2024, 252