On the blow up of solutions for hyperbolic equation involving the fractional Laplacian with source terms

被引:0
作者
Bounaama, Abir [1 ]
Maouni, Messaoud [1 ]
Zeghbib, Fatima Zohra [1 ]
机构
[1] Univ 20 August 1955, Fac Sci, Lab Appl Math & Hist & Didact Math LAMAHIS, Skikda, Algeria
来源
JOURNAL OF MATHEMATICAL MODELING | 2024年 / 12卷 / 02期
关键词
Blow up; energy function; hyperbolic equation; fractional Laplacian; source terms; fractional Sobolev spaces; GLOBAL-SOLUTIONS; WAVE-EQUATIONS; NONEXISTENCE; DECAY;
D O I
10.22124/jmm.2023.25236.2241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up of solutions for hyperbolic equations involving the fractional Laplacian operator with damping and source terms. We obtain the global existence results. Then, we observe the blow-up of solutions using the concavity method. Finally, we present some numerical simulation results.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 50 条
  • [41] On blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy
    Wang, Hua
    He, Yijun
    APPLIED MATHEMATICS LETTERS, 2013, 26 (10) : 1008 - 1012
  • [42] Global nonexistence of solutions for systems of quasilinear hyperbolic equations with damping and source terms
    Ye, Yaojun
    BOUNDARY VALUE PROBLEMS, 2014,
  • [43] GLOBAL EXISTENCE AND BLOW UP OF SOLUTION OF WAVE NONLINEAR EQUATION WITH BOUNDARY FRACTIONAL DAMPING AND LOGARITHMIC SOURCE TERMS
    Mezouar, Nadia
    Boulaaras, Salah
    Guefaifia, Rafik
    Jan, Rashid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (10): : 3086 - 3101
  • [44] Blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy
    Wu, Xiulan
    Guo, Bin
    Gao, Wenjie
    APPLIED MATHEMATICS LETTERS, 2013, 26 (05) : 539 - 543
  • [45] General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms
    Salah Boulaaras
    Fares Kamache
    Youcef Bouizem
    Rafik Guefaifia
    Boundary Value Problems, 2020
  • [46] Blow up of solutions for a nonlinear viscoelastic system with general source term
    Boulaaras, Salah
    Bouizem, Youcef
    QUAESTIONES MATHEMATICAE, 2022, 45 (02) : 185 - 195
  • [47] General decay and blow-up of solutions for a nonlinear wave equation with memory and fractional boundary damping terms
    Boulaaras, Salah
    Kamache, Fares
    Bouizem, Youcef
    Guefaifia, Rafik
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [48] Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms
    Ning Pan
    Patrizia Pucci
    Runzhang Xu
    Binlin Zhang
    Journal of Evolution Equations, 2019, 19 : 615 - 643
  • [49] Blow Up of Solutions for a Viscoelastic System with Damping and Source Terms in IRn
    Liu, Wenjun
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (05): : 392 - 400
  • [50] Blow-up and decay for a class of pseudo-parabolic equation with p-Laplacian operator and nonlinearity source
    Wu, Xiulan
    Yang, Xiaoxin
    Gao, Yanchao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (02)