Learning argumentation frameworks from labelings

被引:1
作者
Bengel, Lars [1 ]
Thimm, Matthias [1 ]
Rienstra, Tjitze [2 ]
机构
[1] Fernuniv, Artificial Intelligence Grp, Hagen, Germany
[2] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
关键词
Abstract argumentation; labelings; semantics; learning; ACCEPTABILITY; SEMANTICS;
D O I
10.3233/AAC-220018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of learning argumentation frameworks from a given set of labelings such that every input is a s-labeling of these argumentation frameworks. Our new algorithm takes labelings and computes attack constraints for each argument that represent the restrictions on argumentation frameworks that are consistent with the input labelings. Having constraints on the level of arguments allows for a very effective parallelization of all computations. An important element of this approach is maintaining a representation of all argumentation frameworks that satisfy the input labelings instead of simply finding any suitable argumentation framework. This is especially important, for example, if we receive additional labelings at a later time and want to refine our result without having to start all over again. The developed algorithm is compared to previous works and an evaluation of its performance has been conducted.
引用
收藏
页码:121 / 159
页数:39
相关论文
共 50 条
  • [41] COMPUTING OR ESTIMATING EXTENSION'S PROBABILITIES OVER STRUCTURED PROBABILISTIC ARGUMENTATION FRAMEWORKS
    Fazzinga, Bettina
    Flesca, Sergio
    Parisi, Francesco
    Pietramala, Adriana
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2016, 3 (02): : 177 - 200
  • [42] Efficiently computing extensions' probabilities over probabilistic Bipolar Abstract Argumentation Frameworks
    Fazzinga, Bettina
    Flesca, Sergio
    Furfaro, Filippo
    Scala, Francesco
    INTELLIGENZA ARTIFICIALE, 2019, 13 (02) : 189 - 200
  • [43] Labeled Bipolar Argumentation Frameworks
    Escanuela Gonzalez, Melisa G.
    Budan, Maximiliano C. D.
    Simari, Gerardo, I
    Simari, Guillermo R.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 70 : 1557 - 1636
  • [44] Verification in incomplete argumentation frameworks
    Baumeister, Dorothea
    Neugebauer, Daniel
    Rothe, Joerg
    Schadrack, Hilmar
    ARTIFICIAL INTELLIGENCE, 2018, 264 : 1 - 26
  • [45] Argumentation Frameworks with Attack Classification
    Vassiliades, Alexandros
    Flouris, Giorgos
    Patkos, Theodore
    Bikakis, Antonis
    Bassiliades, Nick
    Plexousakis, Dimitris
    JOURNAL OF LOGIC AND COMPUTATION, 2023, 33 (02) : 192 - 229
  • [46] On the acceptance of loops in argumentation frameworks
    Arieli, Ofer
    JOURNAL OF LOGIC AND COMPUTATION, 2016, 26 (04) : 1203 - 1234
  • [47] Constrained Incomplete Argumentation Frameworks
    Mailly, Jean-Guy
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2021, 2021, 12897 : 103 - 116
  • [48] Bipolarity in temporal argumentation frameworks
    Budan, Maximiliano C. D.
    Laura Cobo, Maria
    Martinez, Diego C.
    Simari, Guillermo R.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 84 : 1 - 22
  • [49] Acceptance in incomplete argumentation frameworks
    Baumeister, Dorothea
    Jarvisalo, Matti
    Neugebauer, Daniel
    Niskanen, Andreas
    Rothe, Joerg
    ARTIFICIAL INTELLIGENCE, 2021, 295
  • [50] Probabilistic fuzzy argumentation frameworks with finite fuzzy statuses
    Wu, J. C.
    Li, H. F.
    Liu, X. Y.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2023, 20 (03): : 177 - 189