Learning argumentation frameworks from labelings

被引:1
|
作者
Bengel, Lars [1 ]
Thimm, Matthias [1 ]
Rienstra, Tjitze [2 ]
机构
[1] Fernuniv, Artificial Intelligence Grp, Hagen, Germany
[2] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
关键词
Abstract argumentation; labelings; semantics; learning; ACCEPTABILITY; SEMANTICS;
D O I
10.3233/AAC-220018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of learning argumentation frameworks from a given set of labelings such that every input is a s-labeling of these argumentation frameworks. Our new algorithm takes labelings and computes attack constraints for each argument that represent the restrictions on argumentation frameworks that are consistent with the input labelings. Having constraints on the level of arguments allows for a very effective parallelization of all computations. An important element of this approach is maintaining a representation of all argumentation frameworks that satisfy the input labelings instead of simply finding any suitable argumentation framework. This is especially important, for example, if we receive additional labelings at a later time and want to refine our result without having to start all over again. The developed algorithm is compared to previous works and an evaluation of its performance has been conducted.
引用
收藏
页码:121 / 159
页数:39
相关论文
共 50 条
  • [1] JOINT ATTACKS AND ACCRUAL IN ARGUMENTATION FRAMEWORKS
    Bikakis, Antonis
    Cohen, Andrea
    Dvorak, Wolfgang
    Flouris, Giorgos
    Parsons, Simon
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2021, 8 (06): : 1437 - 1501
  • [2] Valid attacks in argumentation frameworks with recursive attacks
    Cayrol, C.
    Fandinno, J.
    del Cerro, L. Farinas
    Lagasquie-Schiex, M-C
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2021, 89 (1-2) : 53 - 101
  • [3] Argumentation frameworks with necessities and their relationship with logic programs
    Nouioua, Farid
    Boutouhami, Sara
    ARGUMENT & COMPUTATION, 2023, 14 (01) : 17 - 58
  • [4] Godel Fuzzy Argumentation Frameworks
    Wu, Jiachao
    Li, Hengfei
    Oren, Nir
    Norman, Timothy J.
    COMPUTATIONAL MODELS OF ARGUMENT, 2016, 287 : 447 - 458
  • [5] Moving Between Argumentation Frameworks
    Oren, Nir
    Reed, Chris
    Luck, Michael
    COMPUTATIONAL MODELS OF ARGUMENT: PROCEEDINGS OF COMMA 2010, 2010, 216 : 379 - 390
  • [6] Incomplete Argumentation Frameworks: Properties and Complexity
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    Trubitsyna, Irina
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5451 - 5460
  • [7] Characterizing strong equivalence for argumentation frameworks
    Oikarinen, Emilia
    Woltran, Stefan
    ARTIFICIAL INTELLIGENCE, 2011, 175 (14-15) : 1985 - 2009
  • [8] Incremental Computation in Dynamic Argumentation Frameworks
    Alfano, Gianvincenzo
    Greco, Sergio
    Parisi, Francesco
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (06) : 80 - 86
  • [9] Argumentation Frameworks with Necessities
    Nouioua, Farid
    Risch, Vincent
    SCALABLE UNCERTAINTY MANAGEMENT, 2011, 6929 : 163 - 176
  • [10] Generalizations of Dung Frameworks and Their Role in Formal Argumentation
    Brewka, Gerhard
    Polberg, Sylwia
    Woltran, Stefan
    IEEE INTELLIGENT SYSTEMS, 2014, 29 (01) : 30 - 38