Core Boosting in SAT-Based Multi-objective Optimization

被引:0
作者
Jabs, Christoph [1 ]
Berg, Jeremias [1 ]
Jarvisalo, Matti [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, HIIT, Helsinki, Finland
来源
INTEGRATION OF CONSTRAINT PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND OPERATIONS RESEARCH, PT II, CPAIOR 2024 | 2024年 / 14743卷
关键词
Multi-objective optimization; maximum satisfiability; core boosting; preprocessing; MAXSAT;
D O I
10.1007/978-3-031-60599-4_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Maximum satisfiability (MaxSAT) constitutes today a successful approach to solving various real-world optimization problems through propositional encodings. Building on this success, approaches have recently been proposed for finding Pareto-optimal solutions to multi-objective MaxSAT (MO-MaxSAT) instances, i.e., propositional encodings under multiple objective functions. In this work, we propose core boosting as a reformulation/preprocessing technique for improving the runtime performance of MO-MaxSAT solvers. Core boosting in the multi-objective setting allows for shrinking the ranges of the multiple objectives at hand, which can be particularly beneficial for MO-MaxSAT relying on search that requires enforcing increasingly tighter objective bounds through propositional encodings. We show that core boosting is effective in improving the runtime performance of SAT-based MO-MaxSAT solvers typically with little overhead.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [22] Splitting for Multi-objective Optimization
    Qibin Duan
    Dirk P. Kroese
    Methodology and Computing in Applied Probability, 2018, 20 : 517 - 533
  • [23] A novel Pareto-based multi-objective vibration damping optimization algorithm to solve multi-objective optimization problems
    Hajipour, V.
    Mehdizadeh, E.
    Tavakkoli-Moghaddam, R.
    SCIENTIA IRANICA, 2014, 21 (06) : 2368 - 2378
  • [24] A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems
    Mohamed A. Tawhid
    Vimal Savsani
    Applied Intelligence, 2018, 48 : 3762 - 3781
  • [25] Progressive Multi-Objective Optimization
    Sorensen, Kenneth
    Springael, Johan
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2014, 13 (05) : 917 - 936
  • [26] Splitting for Multi-objective Optimization
    Duan, Qibin
    Kroese, Dirk P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (02) : 517 - 533
  • [27] A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems
    Tawhid, Mohamed A.
    Savsani, Vimal
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3762 - 3781
  • [28] Multi-objective optimization of process based on resource capability
    孙雪冬
    徐晓飞
    王刚
    吕民
    Journal of Harbin Institute of Technology(New series), 2007, (04) : 450 - 453
  • [29] Adaptive Multi-Objective Optimization Based on Feedback Design
    窦立谦
    宗群
    吉月辉
    曾凡琳
    Transactions of Tianjin University, 2010, 16 (05) : 359 - 365
  • [30] Adaptive multi-objective optimization based on feedback design
    Dou L.
    Zong Q.
    Ji Y.
    Zeng F.
    Transactions of Tianjin University, 2010, 16 (5) : 359 - 365