Power unit exponential probability distribution: Statistical inference and applications

被引:1
作者
Alsadat, Najwan [1 ]
Tanis, Caner [2 ]
Sapkota, Laxmi Prasad [3 ]
Rajitha, C. S. [4 ]
Bahloul, Mahmoud Mohamed [5 ]
Gemeay, Ahmed M. [6 ]
机构
[1] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, POB 71115, Riyadh 11587, Saudi Arabia
[2] Cankiri Karatekin Univ, Dept Stat, Cankiri, Turkiye
[3] Tribhuvan Univ, Dept Stat, Tribhuvan Multiple Campus, Palpa, Nepal
[4] Amrita Vishwa Vidyapeetham, Amrita Sch Phys Sci, Dept Math, Coimbatore 641112, India
[5] Helwan Univ, Fac Commerce & Business Adm, Informat Syst Dept, Cairo, Egypt
[6] Tanta Univ, Fac Sci, Dept Math, Tanta 31527, Egypt
关键词
Unit exponential; Power transformation; Estimation; Goodness-of-fit;
D O I
10.1016/j.aej.2024.07.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a generalized version of a unit distribution called power unit exponential probability distribution (PUEPrD) using the power transformation of the unit exponential probability distribution. Some statistical properties of the proposed distribution are derived. For some selected parameter cases, we have demonstrated that the hazard function of the proposed distribution can be shaped by increasing and bathtub curves. Twelve estimation methods such as maximum likelihood, Anderson-Darling, Cramer-von-Mises, maximum product spacings, least squares, weighted least squares, right tail Anderson Darling, left-tail Anderson Darling, minimum spacing absolute distance, minimum spacing absolute-log distance, Anderson Darling left-tail second order, Kolmogorov are used to estimate the parameters of the suggested distribution. A numerical simulation study is conducted to check the efficiency of the parameter estimates of the proposed model. With the help of some real-life data sets, the flexibility and usefulness of the PUEPrD are illustrated. As a result of two real data analyses, we observe that the fit of the proposed distribution to the data is superior to its competitors according to the examined criteria.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 24 条
  • [1] Unit Exponentiated Frechet Distribution: Actuarial Measures, Quantile Regression and Applications
    Abubakari, Abdul Ghaniyyu
    Luguterah, Albert
    Nasiru, Suleman
    [J]. JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2022, 23 (02) : 387 - 424
  • [2] A new unit distribution: properties, inference, and applications
    Afify, Ahmed Z.
    Nassar, Mazen
    Kumar, Devendra
    Cordeiro, Gauss M.
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (02)
  • [3] The log-weighted exponential regression model: alternative to the beta regression model
    Altun, Emrah
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (10) : 2306 - 2321
  • [4] Altun E, 2018, J SFDS, V159, P40
  • [5] Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling
    Bakouch, Hassan S.
    Hussain, Tassaddaq
    Tosic, Marina
    Stojanovic, Vladica S.
    Qarmalah, Najla
    [J]. MATHEMATICS, 2023, 11 (19)
  • [6] Bayes M., 1763, RSPT, V53, P370, DOI [10.1098/rstl.1763.0053, DOI 10.1098/RSTL.1763.0053]
  • [7] Biswas A, 2021, Arxiv, DOI arXiv:2101.04661
  • [8] Consul P. C., 1971, Statistische Hefte, V12, P100, DOI DOI 10.1007/BF02922944
  • [9] Dasgupta R, 2011, SANKHYA SER B, V73, P1, DOI 10.1007/s13571-011-0015-y
  • [10] Bayesian Inference and Data Analysis of the Unit-Power Burr X Distribution
    Fayomi, Aisha
    Hassan, Amal S.
    Baaqeel, Hanan
    Almetwally, Ehab M.
    [J]. AXIOMS, 2023, 12 (03)