Ultrahigh Thermal Rectification at Small Temperature Difference Achieved by Near-Field Thermal Photon Manipulation

被引:0
作者
Deng, Yan [1 ,2 ]
Shi, Kezhang [1 ,3 ]
Bao, Fanglin [4 ]
Antezza, Mauro [5 ]
Evans, Julian [3 ]
He, Sailing [1 ,3 ,6 ]
机构
[1] Zhejiang Univ, Ningbo Innovat Ctr, Ningbo 315100, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, ZJU SCNU Joint Ctr Photon, Ctr Opt & Electromagnet Res, Guangzhou 510006, Peoples R China
[3] Zhejiang Univ, Natl Engn Res Ctr Opt Instruments, Ctr Opt & Electromagnet Res, Hangzhou 310058, Peoples R China
[4] Westlake Univ, Sch Sci, Hangzhou 310024, Peoples R China
[5] Univ Montpellier, Lab Charles Coulomb L2C, CNRS, UMR 5221, F-34095 Montpellier, France
[6] Royal Inst Technol, Dept Elect Engn, SE-100 Stockholm, Sweden
来源
ADVANCED OPTICAL MATERIALS | 2024年 / 12卷 / 33期
基金
中国国家自然科学基金;
关键词
graphene; near-field thermal photon manipulation; surface plasmon polaritons; thermal diode; thermal rectification; RADIATIVE HEAT-TRANSFER; GRAPHENE; DRIVEN; MODE;
D O I
10.1002/adom.202401633
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal diodes, which allow heat to flow in a preferential direction, are an essential component of thermal circuitry and will find applications in many fields ranging from thermal photon controls to quantum information. The quality of a thermal diode is defined by the thermal rectification ratio (TRR). Here, an ultrahigh TRR exceeding 105 at a small temperature difference (1-5 K) is presented based on near-field thermal photon (NFTP) manipulation, by utilizing asymmetric gap-variated dual terminals based on graphene/Si heterostructures and materials with contrasting thermal expansion coefficients. Analyses of the photon tunneling probability show that the colossal TRR comes from coupled and decoupled graphene surface plasmon polaritons under opposite temperature biases, remaining robust across a wide operating temperature range. Further enhancement can be achieved by tuning the Fermi level of graphene. This work demonstrates the significance of asymmetry in NFTP manipulation for thermal diode performance, achieving an ultrahigh TRR, which is at least three orders higher than the state-of-the-art structures at the same small temperature difference (1-5 K), and is comparable to state-of-the-art electronic diodes. An ultrahigh thermal rectification ratio exceeding 105 at a small temperature difference (such as 5 K) is presented based on near-field thermal photon manipulation, by utilizing asymmetric gap-variated dual terminals based on graphene/Si heterostructures and materials with contrasting thermal expansion coefficients. The coupling and decoupling of graphene surface plasmon polaritons enable this colossal heat flux contrast, surpassing state-of-the-art passive thermal diodes. image
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap
    Bernardi, Michael P.
    Milovich, Daniel
    Francoeur, Mathieu
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [2] Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field
    Biehs, S. -A.
    Tschikin, M.
    Ben-Abdallah, P.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [3] Far- and Near-Field Heat Transfer in Transdimensional Plasmonic Film Systems
    Biehs, Svend-Age
    Bondarev, Igor V.
    [J]. ADVANCED OPTICAL MATERIALS, 2023, 11 (10)
  • [4] A three-terminal magnetic thermal transistor
    Castelli, Lorenzo
    Zhu, Qing
    Shimokusu, Trevor J.
    Wehmeyer, Geoff
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Solid-state thermal rectifier
    Chang, C. W.
    Okawa, D.
    Majumdar, A.
    Zettl, A.
    [J]. SCIENCE, 2006, 314 (5802) : 1121 - 1124
  • [6] Optical nano-imaging of gate-tunable graphene plasmons
    Chen, Jianing
    Badioli, Michela
    Alonso-Gonzalez, Pablo
    Thongrattanasiri, Sukosin
    Huth, Florian
    Osmond, Johann
    Spasenovic, Marko
    Centeno, Alba
    Pesquera, Amaia
    Godignon, Philippe
    Zurutuza Elorza, Amaia
    Camara, Nicolas
    Javier Garcia de Abajo, F.
    Hillenbrand, Rainer
    Koppens, Frank H. L.
    [J]. NATURE, 2012, 487 (7405) : 77 - 81
  • [7] Chen XP, 2017, NAT NANOTECHNOL, V12, P797, DOI [10.1038/NNANO.2017.110, 10.1038/nnano.2017.110]
  • [8] Chen Z., 2024, ADV OPT MATER, V12
  • [9] Dai S, 2015, NAT NANOTECHNOL, V10, P682, DOI [10.1038/nnano.2015.131, 10.1038/NNANO.2015.131]
  • [10] Fundamental Limits of the Dew-Harvesting Technology
    Dong, Minghao
    Zhang, Zheng
    Shi, Yu
    Zhao, Xiaodong
    Fan, Shanhui
    Chen, Zhen
    [J]. NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2020, 24 (01) : 43 - 52