Existence of periodic measures of fractional stochastic delay complex Ginzburg-Landau equations on Rn

被引:0
|
作者
Li, Zhiyu [1 ,2 ]
Song, Xiaomin [1 ,2 ]
He, Gang [1 ,2 ]
Shu, Ji [1 ,2 ]
机构
[1] Sichuan Normal Univ, Laurent Math Ctr, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
REACTION-DIFFUSION EQUATIONS; ASYMPTOTIC-BEHAVIOR; RANDOM ATTRACTORS; DYNAMICS;
D O I
10.1063/5.0180975
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with periodic measures of fractional stochastic complex Ginzburg-Landau equations with variable time delay on unbounded domains. We first derive the uniform estimates of solutions. Then we establish the regularity and prove the equicontinuity of solutions in probability, which is used to prove the tightness of distributions of solutions. In order to overcome the non-compactness of Sobolev embeddings on unbounded domains, we use the uniform estimates on the tails in probability. As a result, we prove the existence of periodic measures by combining Arzela-Ascoli theorem and Krylov-Bogolyubov method.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations
    Rougemont, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) : 423 - 448
  • [32] Soliton dynamics in a fractional complex Ginzburg-Landau model
    Qiu, Yunli
    Malomed, Boris A.
    Mihalache, Dumitru
    Zhu, Xing
    Zhang, Li
    He, Yingji
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [33] The Inviscid Limit of the Fractional Complex Ginzburg-Landau Equation
    Wang, Lijun
    Li, Jingna
    Xia, Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (06) : 333 - 341
  • [34] Exact periodic solutions of the complex Ginzburg-Landau equation
    Porubov, AV
    Velarde, MG
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 884 - 896
  • [35] Recurrent motion in the fractional complex Ginzburg-Landau equation
    Cheng, Ming
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [36] Relative periodic solutions of the complex Ginzburg-Landau equation
    López, V
    Boyland, P
    Heath, MT
    Moser, RD
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1042 - 1075
  • [37] LOCAL AND GLOBAL EXISTENCE OF SOLUTIONS OF THE GINZBURG-LANDAU TYPE EQUATIONS
    Zhou Fujun
    Cui Shangbin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (03): : 220 - 246
  • [38] Inviscid Limits of the Complex Generalized Ginzburg-Landau Equations
    杨灵娥
    数学进展, 2002, (06) : 573 - 574
  • [39] Dissipative Solitons in Coupled Complex Ginzburg-Landau Equations
    Pak, On Shun
    Lam, Chun Kit
    Nakkeeran, Kaliyaperumal
    Malomed, Boris
    Chow, Kwok Wing
    Senthilnathan, Krishnamoorthy
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (08)
  • [40] SIMILARITY TRANSFORMATIONS OF THE COMPLEX GINZBURG-LANDAU AND ASSOCIATED EQUATIONS
    ROSENAU, P
    SCHWARZMEIER, JL
    PHYSICS LETTERS A, 1986, 114 (07) : 355 - 358