LINEAR ABELIAN MODAL LOGIC

被引:0
作者
Mohammadi, Hamzeh [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 841583111, Iran
来源
BULLETIN OF THE SECTION OF LOGIC | 2024年 / 53卷 / 01期
关键词
many-valued logic; modal logic; abelian logic; hypersequent calculus; cut-elimination; MV-ALGEBRAS; FUZZY;
D O I
10.18778/0138-0680.2023.30
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
A many-valued modal logic, called linear abelian modal logicLK(A) is intro-duced as an extension of the abelian modal logicK(A). Abelian modal logicK(A) is the minimal modal extension of the logic of lattice-ordered abeliangroups. The logicLK(A) is axiomatized by extendingK(A) with the modalaxiom schemas square(phi boolean OR psi)->(square phi boolean OR square psi) and (square phi boolean AND square psi)->square(phi boolean AND psi). Complete-ness theorem with respect to algebraic semantics and a hypersequent calculusadmitting cut-elimination are established. Finally, the correspondence betweenhypersequent calculi and axiomatization is investigated
引用
收藏
页码:1 / 28
页数:153
相关论文
共 50 条
  • [31] Supervaluationism, Modal Logic, and Weakly Classical Logic
    Schechter, Joshua
    JOURNAL OF PHILOSOPHICAL LOGIC, 2024, 53 (02) : 411 - 461
  • [32] On the Algebraizability of the Implicational Fragment of Abelian Logic
    Sam Butchart
    Susan Rogerson
    Studia Logica, 2014, 102 : 981 - 1001
  • [33] On the Algebraizability of the Implicational Fragment of Abelian Logic
    Butchart, Sam
    Rogerson, Susan
    STUDIA LOGICA, 2014, 102 (05) : 981 - 1001
  • [34] On Łukasiewicz's four-valued modal logic
    Font J.M.
    Hájek P.
    Studia Logica, 2002, 70 (2) : 157 - 182
  • [35] ON COMBINING INTUITIONISTIC AND S4 MODAL LOGIC
    Rasga, Joao
    Sernadas, Cristina
    BULLETIN OF THE SECTION OF LOGIC, 2024, 53 (03): : 321 - 344
  • [36] Substitutional Validity for Modal Logic
    Grossi, Marco
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2023, 64 (03) : 291 - 316
  • [37] The Completeness Problem for Modal Logic
    Achilleos, Antonis
    LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2018), 2018, 10703 : 1 - 21
  • [38] A Substructural Modal Logic of Utility
    Anderson, Gabrielle
    Pym, David
    JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (05) : 1421 - 1464
  • [39] Minimal axiomatization in modal logic
    Bellissima, F
    Cittadini, S
    MATHEMATICAL LOGIC QUARTERLY, 1997, 43 (01) : 92 - 102
  • [40] Specifying coalgebras with modal logic
    Kurz, A
    THEORETICAL COMPUTER SCIENCE, 2001, 260 (1-2) : 119 - 138