LINEAR ABELIAN MODAL LOGIC

被引:0
作者
Mohammadi, Hamzeh [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 841583111, Iran
来源
BULLETIN OF THE SECTION OF LOGIC | 2024年 / 53卷 / 01期
关键词
many-valued logic; modal logic; abelian logic; hypersequent calculus; cut-elimination; MV-ALGEBRAS; FUZZY;
D O I
10.18778/0138-0680.2023.30
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
A many-valued modal logic, called linear abelian modal logicLK(A) is intro-duced as an extension of the abelian modal logicK(A). Abelian modal logicK(A) is the minimal modal extension of the logic of lattice-ordered abeliangroups. The logicLK(A) is axiomatized by extendingK(A) with the modalaxiom schemas square(phi boolean OR psi)->(square phi boolean OR square psi) and (square phi boolean AND square psi)->square(phi boolean AND psi). Complete-ness theorem with respect to algebraic semantics and a hypersequent calculusadmitting cut-elimination are established. Finally, the correspondence betweenhypersequent calculi and axiomatization is investigated
引用
收藏
页码:1 / 28
页数:153
相关论文
共 50 条
  • [21] Modal Multilattice Logic
    Norihiro Kamide
    Yaroslav Shramko
    Logica Universalis, 2017, 11 : 317 - 343
  • [22] Quantum modal logic
    Tokuo, Kenji
    LOGIC JOURNAL OF THE IGPL, 2024,
  • [23] A Modal Sortal Logic
    Max A. Freund
    Journal of Philosophical Logic, 2004, 33 : 237 - 260
  • [24] A modal nonmonotonic logic
    林作铨
    Science in China(Series E:Technological Sciences), 1996, (03) : 303 - 321
  • [25] On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice
    Bou, Felix
    Esteva, Francesc
    Godo, Lluis
    Oscar Rodriguez, Ricardo
    JOURNAL OF LOGIC AND COMPUTATION, 2011, 21 (05) : 739 - 790
  • [26] Modal Multilattice Logic
    Kamide, Norihiro
    Shramko, Yaroslav
    LOGICA UNIVERSALIS, 2017, 11 (03) : 317 - 343
  • [27] A Modal Logic of Metaphor
    Segerberg, Krister
    STUDIA LOGICA, 2011, 99 (1-3) : 337 - 347
  • [28] Fragmenting modal logic
    Iaquinto, Samuele
    De Florio, Ciro
    Frigerio, Aldo
    INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 2024,
  • [29] From Coalgebraic Logic to Modal Logic: An Introduction
    Novitzka, Valerie
    Steingartner, William
    Perhac, Jan
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2019, 15 (02):
  • [30] Supervaluationism, Modal Logic, and Weakly Classical Logic
    Joshua Schechter
    Journal of Philosophical Logic, 2024, 53 : 411 - 461