LINEAR ABELIAN MODAL LOGIC

被引:0
|
作者
Mohammadi, Hamzeh [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 841583111, Iran
来源
BULLETIN OF THE SECTION OF LOGIC | 2024年 / 53卷 / 01期
关键词
many-valued logic; modal logic; abelian logic; hypersequent calculus; cut-elimination; MV-ALGEBRAS; FUZZY;
D O I
10.18778/0138-0680.2023.30
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
A many-valued modal logic, called linear abelian modal logicLK(A) is intro-duced as an extension of the abelian modal logicK(A). Abelian modal logicK(A) is the minimal modal extension of the logic of lattice-ordered abeliangroups. The logicLK(A) is axiomatized by extendingK(A) with the modalaxiom schemas square(phi boolean OR psi)->(square phi boolean OR square psi) and (square phi boolean AND square psi)->square(phi boolean AND psi). Complete-ness theorem with respect to algebraic semantics and a hypersequent calculusadmitting cut-elimination are established. Finally, the correspondence betweenhypersequent calculi and axiomatization is investigated
引用
收藏
页码:1 / 28
页数:153
相关论文
共 50 条
  • [1] A REAL-VALUED MODAL LOGIC
    Diaconescu, Denisa
    Metcalfe, George
    Schnuriger, Laura
    LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (01)
  • [2] Weak Belnapian modal logic
    Drobyshevich, Sergey
    JOURNAL OF LOGIC AND COMPUTATION, 2025, 35 (03)
  • [3] Adaptive Logic as a Modal Logic
    Allo, Patrick
    STUDIA LOGICA, 2013, 101 (05) : 933 - 958
  • [4] Adaptive Logic as a Modal Logic
    Patrick Allo
    Studia Logica, 2013, 101 : 933 - 958
  • [5] Modal logic as dialogical logic
    Blackburn, P
    SYNTHESE, 2001, 127 (1-2) : 57 - 93
  • [6] Modal Logic As Dialogical Logic
    Patrick Blackburn
    Synthese, 2001, 127 : 57 - 93
  • [7] An axiomatisation for the multi-modal logic of knowledge and linear time LTK
    Calardo, Erica
    Rybakov, Vladimir V.
    LOGIC JOURNAL OF THE IGPL, 2007, 15 (03) : 239 - 254
  • [8] Deep sequent systems for modal logic
    Bruennler, Kai
    ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (06) : 551 - 577
  • [9] A Modal Logic for Uncertainty: a Completeness Theorem
    Corsi, Esther Anna
    Flaminio, Tommaso
    Godo, Lluis
    Hosni, Hykel
    INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, VOL 215, 2023, 215 : 119 - 129
  • [10] Deep sequent systems for modal logic
    Kai Brünnler
    Archive for Mathematical Logic, 2009, 48 : 551 - 577