Density functional Bogoliubov-de Gennes theory for superconductors implemented in the SIESTA code

被引:1
|
作者
Reho, R. [1 ,2 ]
Wittemeier, N. [3 ]
Kole, A. H. [1 ,2 ]
Ordejon, P. [3 ]
Zanolli, Z. [1 ,2 ,3 ]
机构
[1] Univ Utrecht, Debye Inst Nanomat Sci, Chem Dept, Condensed Matter & Interfaces, POB 80000, NL-3508 TA Utrecht, Netherlands
[2] Univ Utrecht, ETSF, Condensed Matter & Interfaces, POB 80000, NL-3508 TA Utrecht, Netherlands
[3] Catalan Inst Nanosci & Nanotechnol ICN2, CSIC & BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
关键词
GAP ANISOTROPY; ENERGY-GAP; NEMATICITY; TRANSPORT; SYMMETRY; EQUATIONS; PHASE; FESE;
D O I
10.1103/PhysRevB.110.134505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present SIESTA-BdG, an implementation of the simultaneous solution of the Bogoliubov-de Gennes (BdG) and density functional theory (DFT) problem in SIESTA, a first-principles method and code for material simulations which uses pseudopotentials and a localized basis set. This unified approach describes both conventional and unconventional superconducting states, and enables a description of inhomogeneous superconductors and heterostructures. We demonstrate the validity, accuracy, and efficiency of SIESTA-BdG by computing physically relevant quantities (superconducting charge density, band structure, superconducting gap features, density of states) for conventional singlet (Nb, Pb) and unconventional (FeSe) superconductors. We find excellent agreement with experiments and results obtained within the KKR-BdG computational framework. SIESTA-BdG forms the basis for modeling quantum transport in superconducting devices and including-in an approximate fashion-the superconducting DFT potential of Oliveira, Gross, and Kohn.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Selection rule for topological amplifiers in Bogoliubov-de Gennes systems
    Ling, Hong Y.
    Kain, Ben
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [22] Symmetry-based indicators for topological Bogoliubov-de Gennes Hamiltonians
    Geier, Max
    Brouwer, Piet W.
    Trifunovic, Luka
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [23] Reformulation of Bogoliubov-de Gennes equations for a d-wave superconductor
    Zhu, JX
    PHYSICA C, 2000, 340 (2-3): : 230 - 234
  • [24] Electron-hole coherent states for the Bogoliubov-de Gennes equation
    Gnutzmann, Sven
    Kus, Marek
    Langham-Lopez, Jordan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [25] Exact Bogoliubov-de Gennes solutions for gray-soliton backgrounds
    Walczak, P. B.
    Anglin, J. R.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [26] Bogoliubov-de Gennes versus quasiclassical description of Josephson layered structures
    Ozana, M
    Shelankov, A
    Tobiska, J
    PHYSICAL REVIEW B, 2002, 66 (05)
  • [27] Anderson's "theorem" and Bogoliubov-de Gennes equations for surfaces and impurities
    Tanaka, K
    Marsiglio, F
    PHYSICA C, 2000, 341 : 179 - 180
  • [28] The Bogoliubov-de Gennes system, the AKNS hierarchy, and nonlinear quantum mechanical supersymmetry
    Correa, Francisco
    Dunne, Gerald V.
    Plyushchay, Mikhail S.
    ANNALS OF PHYSICS, 2009, 324 (12) : 2522 - 2547
  • [29] Fully Microscopic Treatment of Magnetic Field Using Bogoliubov-De Gennes Approach
    Neverov, Vyacheslav D.
    Kalashnikov, Alexander
    Lukyanov, Alexander E.
    Krasavin, Andrey V.
    Croitoru, Mihail D.
    Vagov, Alexei
    CONDENSED MATTER, 2024, 9 (01):
  • [30] A method of studying the Bogoliubov-de Gennes equations for the superconducting vortex lattice state
    Han, Qiang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (03)