Quantum symmetry in multigraphs (part II)

被引:0
作者
Goswami, Debashish [1 ]
Hossain, Sk Asfaq [1 ,2 ,3 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
[2] Natl Inst Sci Educ & Res Bhubaneswar, Sch Math Sci, Jatni 752050, India
[3] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, India
关键词
Quantum automorphism group; multigraph; quantum symmetry; AUTOMORPHISM-GROUPS;
D O I
10.1142/S0219025724400125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of Ref. 7. In this paper, we give an explicit construction of a non-Bichon type co-action on a multigraph that is, it preserves quantum symmetry of (V,E) in our sense but not always in Bichon's sense.2 This construction itself is motivated from automorphisms of quantum graphs.
引用
收藏
页数:11
相关论文
共 10 条
[1]   Quantum automorphism groups of homogeneous graphs [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :243-280
[2]   Quantum automorphism groups of finite graphs [J].
Bichon, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :665-673
[3]   Bigalois Extensions and the Graph Isomorphism Game [J].
Brannan, Michael ;
Chirvasitu, Alexandru ;
Eifler, Kari ;
Harris, Samuel ;
Paulsen, Vern ;
Su, Xiaoyu ;
Wasilewski, Mateusz .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (03) :1777-1809
[4]   RANDOM QUANTUM GRAPHS [J].
Chirvasitu, Alexandru ;
Wasilewski, Mateusz .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (05) :3061-3087
[5]  
Daws M, 2024, Arxiv, DOI arXiv:2203.08716
[6]   Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovasz Number [J].
Duan, Runyao ;
Severini, Simone ;
Winter, Andreas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1164-1174
[7]  
Goswami D, 2024, Arxiv, DOI arXiv:2403.00481
[8]  
Hossain S. A., 2023, Ph.D. Thesis
[9]   Quantum symmetry groups of finite spaces [J].
Wang, SZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (01) :195-211
[10]  
Weaver N, 2017, Arxiv, DOI arXiv:1506.03892