Experimental investigation on heat transfer enhancement of supercritical pressure aviation kerosene in tubular laminar flow by vibration

被引:3
作者
Fu, Yanchen [1 ,2 ]
Liu, Weitong [1 ,2 ]
Wang, Juan [3 ]
Zhang, Lina [1 ,2 ]
Wen, Jie [1 ,2 ]
Wu, Hongwei [4 ]
Xu, Guoqiang [1 ,2 ]
机构
[1] Beihang Univ, Res Inst Aeroengine, Beijing 100191, Peoples R China
[2] Beihang Univ, Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China
[3] AECC Sichuan Gas Turbine Res Inst, Chengdu 610500, Peoples R China
[4] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9AB, England
关键词
Heat transfer enhancement; Vibration; Supercritical aviation kerosene; Laminar flow; ENDOTHERMIC HYDROCARBON FUEL; MECHANICAL VIBRATION; SURFACE VIBRATION; CONVECTION;
D O I
10.1016/j.applthermaleng.2024.124206
中图分类号
O414.1 [热力学];
学科分类号
摘要
In advanced aero-engine thermal management systems, aviation kerosene serving as a coolant unavoidably works in a vibration environment. In this article, the laminar heat transfer performance of Chinese aviation kerosene RP-3 flowing through a horizontal micro-tube under various vibration conditions at supercritical pressures was investigated experimentally. The effects of several impact factors such as system pressure, heat flux, mass flux, inlet temperature, vibration acceleration, and vibration frequency on the heat transfer enhancement were explored in a systematic manner. Experimental results indicate that: (i) the vibration could lead to intense thermal and momentum mixing among different boundary layers of tubular laminar flow and significantly strengthens the heat transfer, and the higher Re can lead to a stronger enhancement effect. The maximum observed HTER across all experimental data is 2.8, occurring at x/d = 224.1 with the inlet temperature of 373 K; (ii) HTER hardly changes with system pressures, exhibiting a maximum relative deviation of 3.9 % at different pressures. Heat transfer enhancement has a strong dependency on heat flux, as the heat flux increases from 36 kW/m2 to 108 kW/m2, the average HTC increased by up to 36.4 %; (iii) the HTC and HTER monotonically rise with increasing vibration acceleration. Peak values in HTC and HTER are observed at vibration frequencies of 625 Hz, 191 Hz, and 242 Hz; (iv) vibration has little impact on the thermal acceleration but noticeably weakens the buoyancy close to the outlet area at high heat flux. Two well-predicted correlations for the Nu in tubular laminar flow, one with vibration and one without, are proposed.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Experimental and numerical study on heat transfer enhancement by Flow-induced vibration in pulsating flow
    Duan, Derong
    Cheng, Yujun
    Ge, Mengran
    Bi, Wenbo
    Ge, Peiqi
    Yang, Xuefeng
    APPLIED THERMAL ENGINEERING, 2022, 207
  • [22] Experimental investigation of laminar flow and heat transfer in internally finned tubes
    Shome, B
    Jensen, MK
    JOURNAL OF ENHANCED HEAT TRANSFER, 1996, 4 (01) : 53 - 70
  • [23] Experimental investigation of laminar flow and heat transfer characteristics in square minichannels with twisted tapes
    Feng, Zhenfei
    Ai, Xin
    Wu, Peilin
    Lin, Qingyu
    Huang, Zuqiang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 158
  • [24] Modeling of convective heat transfer of RP-3 aviation kerosene in vertical miniature tubes under supercritical pressure
    Chen, Weiwei
    Fang, Xiande
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 95 : 272 - 277
  • [25] Numerical Study of Heat Transfer Enhancement for Laminar Nanofluids Flow
    Ramirez-Tijerina, Ramon
    Rivera-Solorio, Carlos, I
    Singh, Jogender
    Nigam, K. D. P.
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [26] Experimental study on inlet turbulent flow under ultrasonic vibration: Pressure drop and heat transfer enhancement
    Delouei, A. Amiri
    Sajjadi, H.
    Mohebbi, R.
    Izadi, M.
    ULTRASONICS SONOCHEMISTRY, 2019, 51 : 151 - 159
  • [27] An investigation in the effects of recycles on laminar heat transfer enhancement of parallel-flow heat exchangers
    You, Yonghua
    Fan, Aiwu
    Luo, Xiaojun
    Jin, Shiping
    Liu, Wei
    Huang, Suyi
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2013, 70 : 27 - 36
  • [28] Heat transfer enhancement and pressure drop by pulsating flow through helically coiled tube: An experimental study
    Khosravi-Bizhaem, Hamed
    Abbassi, Abbas
    Ravan, Amir Zivari
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [29] Heat transfer performance of RP-3 aviation kerosene at supercritical pressure within a rotating U-shaped channel
    Kou, Zhihai
    Wang, Xingbo
    Guo, Yuhang
    Li, Binbin
    Li, Guangchao
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2023,
  • [30] Numerical research on heat transfer and thermal oxidation coking characteristics of aviation kerosene RP-3 under supercritical pressure
    Fu, Yanchen
    Zhi, Haoxing
    Wang, Juan
    Sun, Jingchuan
    Wen, Jie
    Xu, Guoqiang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159