Review on Fashion Trend Analysis and Forecasting Techniques - A Machine Learning Approach

被引:0
作者
Jiju, Amrita [1 ]
Anilkumar, Adithya [1 ]
Krishnan, Gokul K. P. [1 ]
George, Jithu [1 ]
Prasanth, R. S. [1 ]
机构
[1] Govt Engn Coll Barton Hill, Dept Informat Technol, Thiruvananthapuram, Kerala, India
来源
2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024 | 2024年
关键词
machine learning; deep learning; neural networks; object detection; fashion item classification; feature extraction; fashion recommendation; fashion dataset; trend analysis; social media;
D O I
10.1109/CITIIT61487.2024.10580247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fashion industry is characterized by its rapid changes involving consumer's ever-changing preferences, whether in color palettes, patterns, seasonal trends, or social and cultural influences. Fashion reflects one's culture, individuality, and societal trends. With technological advancement, the fashion generation and recommendation systems have shown enhancements. The integration of advanced algorithms has emerged as a transformative solution, capable of uncovering concealed insights and effectively addressing color variations and pattern formulation within the intricate landscape of fashion collections. This transformative approach significantly influences production processes and design strategies, fostering an environment where adaptability and responsiveness become pivotal for success. With the rise of machine learning, the industry experiences a paradigm shift, gaining an unprecedented ability to analyze historical and real-time data. The analysis gives a clear idea about the possible combinations and can be efficiently used to create designs that match the upcoming trends. This study examines the use of machine learning as well as deep learning and artificial intelligence in the fashion industry for tasks such as clothing recognition, style understanding, color and style extraction, outfit recommendations, and fashion forecasting. The study highlights various ways of applying machine learning in the fashion domain. However, it's important to note that this review only covers a few methods, as they have shown the best performance in accuracy and efficiency when dealing with a vast amount of fashion data. The limitations mentioned suggest areas that still need exploration for future research.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Prediction of Breast Cancer, Comparative Review of Machine Learning Techniques, and Their Analysis
    Fatima, Noreen
    Liu, Li
    Hong, Sha
    Ahmed, Haroon
    IEEE ACCESS, 2020, 8 : 150360 - 150376
  • [32] Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review
    Kabade, Varad
    Hooda, Ritika
    Raj, Chahat
    Awan, Zainab
    Young, Allison S.
    Welgampola, Miriam S.
    Prasad, Mukesh
    SENSORS, 2021, 21 (22)
  • [33] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [34] Financial forecasting: Advanced machine learning techniques in stock market analysis
    Yoo, Paul D.
    Kim, Maria H.
    Jan, Tony
    PROCEEDINGS OF THE INMIC 2005: 9TH INTERNATIONAL MULTITOPIC CONFERENCE - PROCEEDINGS, 2005, : 40 - 46
  • [35] A Review on Suicidal Ideation Detection Based on Machine Learning and Deep Learning Techniques
    Bhardwaj, Tanya
    Gupta, Paridhi
    Goyal, Akshita
    Nagpal, Akanksha
    Jha, Vivekanand
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 27 - 31
  • [36] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Hari Mohan Rai
    Multimedia Tools and Applications, 2024, 83 : 27001 - 27035
  • [37] Pre-launch Fashion Product Demand Forecasting Using Machine Learning Algorithms
    Arampatzis, Marios
    Theodoridis, G. Eorgios
    Tsadiras, Athanasios
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 362 - 372
  • [38] Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review
    Tyagi, Suryakant
    Szenasi, Sandor
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73427 - 73456
  • [39] Chaotic Time Series Forecasting Approaches Using Machine Learning Techniques: A Review
    Ramadevi, Bhukya
    Bingi, Kishore
    SYMMETRY-BASEL, 2022, 14 (05):
  • [40] A machine learning approach for forecasting hierarchical time series
    Mancuso, Paolo
    Piccialli, Veronica
    Sudoso, Antonio M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182