Efficiency Boosts in Human Mobility Data Privacy Risk Assessment: Advancements within the PRUDEnce Framework

被引:1
作者
Gomes, Fernanda O. [1 ,2 ]
Pellungrini, Roberto [3 ]
Monreale, Anna [2 ]
Renso, Chiara [4 ]
Martina, Jean E. [1 ]
机构
[1] Univ Fed Santa Catarina UFSC, Dept Informat & Stat, Grad Program Comp Sci, BR-88040370 Florianopolis, SC, Brazil
[2] Univ Pisa, Dept Comp Sci, I-56126 Pisa, Italy
[3] Classe Sci Scuola Normale Super, I-56126 Pisa, Italy
[4] Natl Res Council CNR, Inst Informat Sci & Technol ISTI, I-56124 Pisa, Italy
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
privacy; privacy risk; privacy risk assessment; mobility; re-identification; computation improvements; risk; trajectory;
D O I
10.3390/app14178014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the exponential growth of mobility data generated by IoT, social networks, and mobile devices, there is a pressing need to address privacy concerns. Our work proposes methods to reduce the computation of privacy risk evaluation on mobility datasets, focusing on reducing background knowledge configurations and matching functions, and enhancing code performance. Leveraging the unique characteristics of trajectory data, we aim to minimize the size of combination sets and directly evaluate risk for trajectories with distinct values. Additionally, we optimize efficiency by storing essential information in memory to eliminate unnecessary computations. These approaches offer a more efficient and effective means of identifying and addressing privacy risks associated with diverse mobility datasets.
引用
收藏
页数:30
相关论文
共 28 条
[1]   Never Walk Alone:: Uncertainty for anonymity in moving objects databases [J].
Abul, Osman ;
Bonchi, Francesco ;
Nanni, Mirco .
2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, :376-+
[2]  
Achara JP., 2015, P 14 ACM WORKSH PRIV, P27
[3]  
Armando Alessandro, 2015, International Journal of Secure Software Engineering, V6, P70, DOI 10.4018/ijsse.2015040104
[4]   Unique in the Crowd: The privacy bounds of human mobility [J].
de Montjoye, Yves-Alexandre ;
Hidalgo, Cesar A. ;
Verleysen, Michel ;
Blondel, Vincent D. .
SCIENTIFIC REPORTS, 2013, 3
[5]  
Elliot M., 2002, Inference Control in Statistical Databases. From Theory to Practice. Revised Papers from Seminar `Statistical Disclosure Control: From Theory to Practice' (Lecture Notes in Computer Science Vol.2316), P126
[6]  
Franconi L, 2004, ANN NY ACAD SCI, V3050, P262
[7]   EDEN: Enforcing Location Privacy through Re-identification Risk Assessment: A Federated Learning Approach [J].
Khalfoun, Besma ;
Ben Mokhtar, Sonia ;
Bouchenak, Sara ;
Nitu, Vlad .
PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (02)
[8]  
Kolmogorov AN., 1933, GIORN I ITAL DEGLI A, V4, P89
[9]  
Lundberg SM, 2017, ADV NEUR IN, V30
[10]  
Machanavajjhala A., 2007, ACM Trans. Knowl. Discov. Data, V1, P3, DOI [DOI 10.1145/1217299.1217302, DOI 10.1109/ICDE.2006.1, 10.1145/1217299.1217302]