Investigating Calibrated Classification Scores Through the Lens of Interpretability

被引:0
作者
Torabian, Alireza [1 ]
Urner, Ruth [1 ]
机构
[1] York Univ, EECS Dept, Toronto, ON, Canada
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024 | 2024年 / 2155卷
基金
加拿大自然科学与工程研究理事会;
关键词
Calibration; Axiomatic analysis; Evaluation measures;
D O I
10.1007/978-3-031-63800-8_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Calibration is a frequently invoked concept when useful label probability estimates are required on top of classification accuracy. A calibrated model is a function whose values correctly reflect underlying label probabilities. Calibration in itself however does not imply classification accuracy, nor human interpretable estimates, nor is it straightforward to verify calibration from finite data. There is a plethora of evaluation metrics (and loss functions) that each assess a specific aspect of a calibration model. In this work, we initiate an axiomatic study of the notion of calibration. We catalogue desirable properties of calibrated models as well as corresponding evaluation metrics and analyze their feasibility and correspondences. We complement this analysis with an empirical evaluation, comparing common calibration methods to employing a simple, interpretable decision tree.
引用
收藏
页码:207 / 231
页数:25
相关论文
共 37 条
  • [1] Blasiok J., 2023, Advances in Neural Information Processing Systems, V36
  • [2] A Unifying Theory of Distance from Calibration
    Blasiok, Jaroslaw
    Gopalan, Parikshit
    Hu, Lunjia
    Nakkiran, Preetum
    [J]. PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1727 - 1740
  • [3] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159
  • [4] Branco P, 2015, Arxiv, DOI [arXiv:1505.01658, 10.48550/arXiv.1505.01658, DOI 10.48550/ARXIV.1505.01658]
  • [5] Brier GW., 1950, Monthly Weather Review, V78, P1, DOI [10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO
  • [6] 2, DOI 10.1175/1520-0493(1950)078ANDLT
  • [7] 0001:VOFEITANDGT
  • [8] 2.0.CO
  • [9] 2, 10.1175/1520-0493(1950)078andlt
  • [10] 0001:VOFEITandgt