Tensor category equivariant KK-theory

被引:0
作者
Arano, Yuki [1 ]
Kitamura, Kan [2 ]
Kubota, Yosuke [2 ,3 ]
机构
[1] Nagoya Univ Furocho, Grad Sch Math, Chikusaku, Nagoya 4648602, Japan
[2] RIKEN iTHEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Kyoto Univ, Grad Sch Sci, Kitashirakawa Oiwake Cho,Sakyo Ku, Kyoto 6068502, Japan
关键词
KK-theory; Tensor category action; Inclusion of C*-algebras; Anomalous action; BAUM-CONNES CONJECTURE; CROSSED-PRODUCTS; DUALITY; EQUIVALENCE; EXTENSIONS; ALGEBRAS; INDEX;
D O I
10.1016/j.aim.2024.109848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce Kasparov's bivariant K-theory that is equivariant under symmetries of a C*-tensor category. It is motivated by some dualities in quantum group equivariant KK-theory, and the classification theory of inclusions of C*-algebras. The fundamental properties of the KK-theory, i.e., the existence of the Kasparov product, Cuntz's picture, universality, and triangulated category structure, hold in this generalization as well. Moreover, we further prove a new property specific to this theory; the invariance of KK-theory under weak Morita equivalence of the tensor categories. As an example, we study the Baum-Connes type property for 3-co cycle twists of discrete groups. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:72
相关论文
共 46 条
[1]  
Antoun J, 2020, THEOR APPL CATEG, V35, P1683
[2]   Double crossed products of locally compact quantum groups [J].
Baaj, S ;
Vaes, S .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2005, 4 (01) :135-173
[3]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[4]  
Baaj S., 1989, K-Theory, V2, P683
[5]  
Baum Paul., 1994, C ALGEBRAS 1943 1993, V167, P240
[6]  
Bischoff Marcel., 2015, SPRINGERBRIEFS MATH, V3, DOI [DOI 10.1007/978-3-319-14301-9, 10.1007/978-3-319-14301-9]
[7]  
Blackadar B., 1998, K THEORY OPERATOR AL, V5
[8]  
CUNTZ J, 1986, J OPERAT THEOR, V15, P163
[9]  
CUNTZ J, 1987, K-THEORY, V1, P31
[10]   Tannaka-Krein duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum SU(2) [J].
De Commer, Kenny ;
Yamashita, Makoto .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 708 :143-171